Annalisa Crudele
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annalisa Crudele.
International Journal of Molecular Sciences | 2014
Anna Pastore; Anna Alisi; Gianna Di Giovamberardino; Annalisa Crudele; Sara Ceccarelli; Nadia Panera; Carlo Dionisi-Vici; Valerio Nobili
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of metabolic abnormalities ranging from simple triglyceride accumulation in the hepatocytes to hepatic steatosis with inflammation, ballooning and fibrosis. It has been demonstrated that the pathogenesis of NAFLD involves increased oxidative stress, with consumption of the major cellular antioxidant, glutathione (GSH). Liver has a fundamental role in sulfur compound metabolism, although the data reported on plasma thiols status in NAFLD are conflicting. We recruited 63 NAFLD patients, and we analyzed all plasma thiols, such as homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CysGly) and GSH, by high-performance liquid chromatography (HPLC) with fluorescence detection. Hcy, Cys and CysGly plasma levels increased in NAFLD patients (p < 0.0001); whereas GSH levels were decreased in NAFLD patients when compared to controls (p < 0.0001). On the contrary, patients with steatohepatitis exhibited lower levels of Hcy and Cys than subjects without. Furthermore, a positive correlation was found between Hcy and Cys and the presence of fibrosis in children with NAFLD. Taken together, these data demonstrated a defective hepatic sulfur metabolism in children with NAFLD, and that high levels of Hcy and Cys probably correlates with a pattern of more severe histological liver damage, due to mechanisms that require further studies.
Journal of Hepatology | 2017
Antonella Mosca; Valerio Nobili; Rita De Vito; Annalisa Crudele; Eleonora Scorletti; Alberto Villani; Anna Alisi; Christopher D. Byrne
BACKGROUND & AIMS Recent research has suggested that dietary fructose intake may increase serum uric acid (UA) concentrations. Both UA concentration and fructose consumption maybe also increase in NAFLD. It is not known whether dietary fructose consumption and UA concentration are independently associated with non-alcoholic steatohepatitis (NASH). Our aim was to investigate the factors associated with NASH in children and adolescents with proven NAFLD, and to test whether UA concentrations and fructose consumption are independently associated with NASH. METHODS Obese children with NAFLD were studied (n=271). NASH was diagnosed by a NAFLD activity score ⩾5 and the fatty liver inhibition of progression (FLIP) algorithm. Fructose consumption (g/day) was assessed by food frequency questionnaire, and UA (mg/dl) was measured in serum. Binary logistic regression with adjustment for covariates and potential confounders was undertaken to test factors independently associated with NASH. RESULTS NASH occurred in 37.6% of patients. Hyperuricaemia (UA ⩾5.9mg/dl) was present in 47% of patients with NASH compared with 29.7% of non-NASH patients (p=0.003). Both UA concentration (OR=2.488, 95% CI: 1.87-2.83, p=0.004) and fructose consumption (OR=1.612, 95% CI 1.25-1.86, p=0.001) were independently associated with NASH, after adjustment for multiple (and all) measured confounders. Fructose consumption was independently associated with hyperuricaemia (OR=2.021, 95% CI: 1.66-2.78, p=0.01). These data were confirmed using the FLIP algorithm. CONCLUSIONS Both dietary fructose consumption and serum UA concentrations are independently associated with NASH. Fructose consumption was the only factor independently associated with serum UA concentration. LAY SUMMARY Currently, it is not known whether dietary fructose consumption and uric acid (UA) concentration are linked with non-alcoholic steatohepatitis (NASH) in children and adolescents. Our aim was to test whether UA concentrations and fructose consumption are independently associated with NASH in children and adolescents with proven non-alcoholic fatty liver disease (NAFLD). We show that both dietary fructose consumption and serum UA concentrations are independently associated with NASH and fructose consumption was independently linked with high serum UA concentrations.
International Journal of Molecular Sciences | 2013
Serena Vella; Daniela Gnani; Annalisa Crudele; Sara Ceccarelli; Cristiano De Stefanis; Stefania Gaspari; Valerio Nobili; Franco Locatelli; Victor E. Marquez; Rossella Rota; Anna Alisi
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent, chronic liver diseases, worldwide. It is a multifactorial disease caused by complex interactions between genetic, epigenetic and environmental factors. Recently, several microRNAs, some of which epigenetically regulated, have been found to be up- and/or down-regulated during NAFLD development. However, in NAFLD, the essential role of the Polycomb Group protein Enhancer of Zeste Homolog 2 (EZH2), which controls the epigenetic silencing of specific genes and/or microRNAs by trimethylating Lys27 on histone H3, still remains unknown. In this study, we demonstrate that the nuclear expression/activity of the EZH2 protein is down-regulated both in livers from NAFLD rats and in the free fatty acid-treated HepG2. The drop in EZH2 is inversely correlated with: (i) lipid accumulation; (ii) the expression of pro-inflammatory markers including TNF-α and TGF-β; and (iii) the expression of miR-200b and miR-155. Consistently, the pharmacological inhibition of EZH2 by 3-Deazaneplanocin A (DZNep) significantly reduces EZH2 expression/activity, while it increases lipid accumulation, inflammatory molecules and microRNAs. In conclusion, the results of this study suggest that the defective activity of EZH2 can enhance the NAFLD development by favouring steatosis and the de-repression of the inflammatory genes and that of specific microRNAs.
Oncotarget | 2015
Sara Ceccarelli; Nadia Panera; Marco Mina; Daniela Gnani; Cristiano De Stefanis; Annalisa Crudele; C. Rychlicki; Stefania Petrini; Giovannella Bruscalupi; L. Agostinelli; Laura Stronati; Salvatore Cucchiara; Giovanni Musso; Cesare Furlanello; G. Svegliati-Baroni; Valerio Nobili; Anna Alisi
Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH). We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH. In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.
World Journal of Gastroenterology | 2014
Nadia Panera; Daniela Gnani; Annalisa Crudele; Sara Ceccarelli; Valerio Nobili; Anna Alisi
Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted condition including simple steatosis alone or associated with inflammation and ballooning (non-alcoholic steatohepatitis) and eventually fibrosis. The NAFLD incidence has increased over the last twenty years becoming the most frequent chronic liver disease in industrialized countries. Obesity, visceral adiposity, insulin resistance, and many other disorders that characterize metabolic syndrome are the major predisposing risk factors for NAFLD. Furthermore, different factors, including genetic background, epigenetic mechanisms and environmental factors, such as diet and physical exercise, contribute to NAFLD development and progression. Several lines of evidence demonstrate that specific microRNAs expression profiles are strongly associated with several pathological conditions including NAFLD. In NAFLD, microRNA deregulation in response to intrinsic genetic or epigenetic factors or environmental factors contributes to metabolic dysfunction. In this review we focused on microRNAs role both as controlled and controllers molecules in NAFLD development and/or their eventual value as non-invasive biomarkers of disease.
Applied Physiology, Nutrition, and Metabolism | 2017
Evelyn Zöhrer; Anna Alisi; Jörg Jahnel; Antonella Mosca; Claudia Della Corte; Annalisa Crudele; Günter Fauler; Valerio Nobili
Nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease, is one of the most common hepatic diseases in children. We conducted a randomized controlled clinical trial on children with biopsy-proven NASH based on a combinatorial nutritional approach compared with placebo. Participants were assigned to lifestyle modification plus placebo or lifestyle modification plus a mix containing docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE). Forty children and adolescents participated in the entire trial. The primary outcome was the improvement of liver hyperechogenicity. Secondary outcomes included alterations of alanine aminotransferase (ALT) and other metabolic parameters. Furthermore, changes of serum bile acids (BA) and plasma fibroblast growth factor 19 (FGF19) levels were evaluated as inverse biomarkers of disease severity. At the end of the study, we observed a significant decrease in severe steatosis in the treatment group (50% to 5%, p = 0.001). Furthermore, although the anthropometric and biochemical measurements in the placebo and DHA-CHO-VE groups were comparable at baseline, at the end of the study ALT and fasting glucose levels improved only in the treatment group. Finally, we found that BA levels were not influenced whereas FGF19 levels were significantly increased by DHA-CHO-VE. The results suggest that a combination of DHA, VE, and CHO could improve steatosis and reduce ALT and glucose levels in children with NASH. However, further studies are needed to assess the impact of a DHA and VE combination on repair of liver damage in paediatric NASH.
Cell Death & Differentiation | 2017
Daniela Gnani; Ilaria Romito; Simona Artuso; Marco Chierici; Cristiano De Stefanis; Nadia Panera; Annalisa Crudele; Sara Ceccarelli; Elena Carcarino; Valentina D’Oria; Manuela Porru; Ezio Giorda; Karin Johanna Ferrari; Luca Miele; Erica Villa; Clara Balsano; Diego Pasini; Cesare Furlanello; Franco Locatelli; Valerio Nobili; Rossella Rota; Carlo Leonetti; Anna Alisi
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in humans. The focal adhesion tyrosine kinase (FAK) is often over-expressed in human HCC and FAK inhibition may reduce HCC cell invasiveness. However, the anti-oncogenic effect of FAK knockdown in HCC cells remains to be clarified. We found that FAK depletion in HCC cells reduced in vitro and in vivo tumorigenicity, by inducing G2/M arrest and apoptosis, decreasing anchorage-independent growth, and modulating the expression of several cancer-related genes. Among these genes, we showed that FAK silencing decreased transcription and nuclear localization of enhancer of zeste homolog 2 (EZH2) and its tri-methylation activity on lysine 27 of histone H3 (H3K27me3). Accordingly, FAK, EZH2 and H3K27me3 were concomitantly upregulated in human HCCs compared to non-tumor livers. In vitro experiments demonstrated that FAK affected EZH2 expression and function by modulating, at least in part, p53 and E2F2/3 transcriptional activity. Moreover, FAK silencing downregulated both EZH2 binding and histone H3K27me3 levels at the promoter of its target gene NOTCH2. Finally, we found that pharmacological inhibition of FAK activity resembled these effects although milder. In summary, we demonstrate that FAK depletion reduces HCC cell growth by affecting cancer-promoting genes including the pro-oncogene EZH2. Furthermore, we unveil a novel unprecedented FAK/EZH2 crosstalk in HCC cells, thus identifying a targetable network paving the way for new anticancer therapies.
Expert Review of Gastroenterology & Hepatology | 2016
Nadia Panera; Claudia Della Corte; Annalisa Crudele; Laura Stronati; Valerio Nobili; Anna Alisi
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is currently considered the main cause of chronic liver disease worldwide. Mechanisms leading to the development and progression of this disease are topics of great interest for researchers and clinicians. The current multi-hit hypothesis has thrown the crosstalk between liver and adipose tissue into sharp focus. It is well known that adipose tissue produces circulating factors, known as adipocytokines, which exert several effects on liver cells, promoting the onset of NAFLD and its progression to non-alcoholic steatohepatitis in obese subjects. In a similar way, hepatocytes may also respond to obesogenic stimuli by producing and releasing hepatokines into the circulation. Here, the authors provide an overview of recent advances in our understanding of the role of the most relevant adipocytokines and hepatokines in NAFLD pathogenesis, highlighting their possible molecular and functional interactions.
International Journal of Molecular Sciences | 2017
Nadia Panera; Annalisa Crudele; Ilaria Romito; Daniela Gnani; Anna Alisi
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.
The Journal of Pediatrics | 2017
Diletta Valentini; Anna Alisi; Chiara Di Camillo; Maria Rita Sartorelli; Annalisa Crudele; Andrea Bartuli; Valerio Nobili; Alberto Villani
Objective To assess the prevalence of overweight/obesity in a cohort of Italian children with Down syndrome (DS) and to investigate the correlation of both obesity and DS with nonalcoholic fatty liver disease (NAFLD). Study design We enrolled 280 children with DS (age range 5–18 years), who were referred to the DS outpatient clinic of the Bambino Gesù Childrens Hospital in Rome. For all children, we collected the clinical history and measured anthropometric variables. Eighty‐four of 280 children with DS were selected to undergo liver ultrasound scanning to evaluate the presence of NAFLD. Results Italian children with DS exhibited a prevalence of 19.64% for overweight and 12.14% for obesity. The prevalence of NAFLD in nonobese (45%) and overweight/obese (82%) children with DS is greater than in the European pediatric nonobese (5.7%) or obese population (33%). Moreover, the severity of liver brightness on ultrasound scan correlated positively with body mass index, triglycerides, low‐density lipoprotein‐cholesterol, and leptin levels and negatively with adiponectin. Conclusions We demonstrated that, independently from the obese phenotype, children with DS display a greater risk to develop NAFLD than the general pediatric population.