Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annamaria Sandomenico is active.

Publication


Featured researches published by Annamaria Sandomenico.


Cell Death and Disease | 2013

Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells

Valeria Severino; Nicola Alessio; Annarita Farina; Annamaria Sandomenico; Marilena Cipollaro; Gianfranco Peluso; Umberto Galderisi; Angela Chambery

Cellular senescence is the permanent arrest of cell cycle, physiologically related to aging and aging-associated diseases. Senescence is also recognized as a mechanism for limiting the regenerative potential of stem cells and to protect cells from cancer development. The senescence program is realized through autocrine/paracrine pathways based on the activation of a peculiar senescence-associated secretory phenotype (SASP). We show here that conditioned media (CM) of senescent mesenchymal stem cells (MSCs) contain a set of secreted factors that are able to induce a full senescence response in young cells. To delineate a hallmark of stem cells SASP, we have characterized the factors secreted by senescent MSC identifying insulin-like growth factor binding proteins 4 and 7 (IGFBP4 and IGFBP7) as key components needed for triggering senescence in young MSC. The pro-senescent effects of IGFBP4 and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from senescent-CM. The blocking of IGFBP4/7 also reduces apoptosis and promotes cell growth, suggesting that they may have a pleiotropic effect on MSC biology. Furthermore, the simultaneous addition of rIGFBP4/7 increased senescence and induced apoptosis in young MSC. Collectively, these results suggest the occurrence of novel-secreted factors regulating MSC cellular senescence of potential importance for regenerative medicine and cancer therapy.


Cancer Cell | 2014

Cancer-Selective Targeting of the Nf-ΚB Survival Pathway With Gadd45Β/Mkk7 Inhibitors

Laura Tornatore; Annamaria Sandomenico; Domenico Raimondo; Caroline M. R. Low; Alberto Rocci; Cathy Tralau-Stewart; Daria Capece; Daniel D’Andrea; Marco Bua; Eileen Boyle; Pietro Zoppoli; Albert Jaxa-Chamiec; Anil K. Thotakura; Julian Dyson; Brian A. Walker; Antonio Leonardi; Angela Chambery; Christoph Driessen; Pieter Sonneveld; Gareth J. Morgan; Antonio Palumbo; Anna Tramontano; Amin Rahemtulla; Menotti Ruvo; Guido Franzoso

Summary Constitutive NF-κB signaling promotes survival in multiple myeloma (MM) and other cancers; however, current NF-κB-targeting strategies lack cancer cell specificity. Here, we identify the interaction between the NF-κB-regulated antiapoptotic factor GADD45β and the JNK kinase MKK7 as a therapeutic target in MM. Using a drug-discovery strategy, we developed DTP3, a D-tripeptide, which disrupts the GADD45β/MKK7 complex, kills MM cells effectively, and, importantly, lacks toxicity to normal cells. DTP3 has similar anticancer potency to the clinical standard, bortezomib, but more than 100-fold higher cancer cell specificity in vitro. Notably, DTP3 ablates myeloma xenografts in mice with no apparent side effects at the effective doses. Hence, cancer-selective targeting of the NF-κB pathway is possible and, at least for myeloma patients, promises a profound benefit.


Bioorganic & Medicinal Chemistry Letters | 2012

Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors

Emanuela Truppo; Claudiu T. Supuran; Annamaria Sandomenico; Daniela Vullo; Alessio Innocenti; Anna Di Fiore; Vincenzo Alterio; Giuseppina De Simone; Simona Maria Monti

Human carbonic anhydrase (CA, EC 4.2.1.1) VII is a cytosolic enzyme with high carbon dioxide hydration activity. Here we report an unexpected S-glutathionylation of hCA VII which has also been observed earlier in vivo for hCA III, another cytosolic isoform. Cys183 and Cys217 were found to be the residues involved in reaction with glutathione for hCA VII. The two reactive cysteines were then mutated and the corresponding variant (C183S/C217S) expressed. The native enzyme, the variant and the S-glutathionylated adduct (sgCA VII) as well as hCA III were fully characterized for their CO(2) hydration, esterase/phosphatase activities, and inhibition with sulfonamides. Our findings suggest that hCA VII could use the in vivo S-glutathionylation to function as an oxygen radical scavenger for protecting cells from oxidative damage, as the activity and affinity for inhibitors of the modified enzyme are similar to those of the wild type.


PLOS ONE | 2011

Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation

Gianna Palmieri; Paolo Bergamo; Alberto Luini; Menotti Ruvo; Marta Gogliettino; Emma Langella; Michele Saviano; Ramanath N. Hegde; Annamaria Sandomenico; Mosè Rossi

Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy. Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed. Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression.


Biosensors and Bioelectronics | 2012

A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode

P. Pilla; Annamaria Sandomenico; Viera Malachovská; Anna Borriello; M. Giordano; Antonello Cutolo; Menotti Ruvo; A. Cusano

We present a fast and effective method for anchoring bioreceptors to optical waveguides exhibiting a poorly reactive polymer interface and that have to be minimally perturbed with respect to their design. The study originated from the need to biofunctionalize a fiber optic Long Period Grating (LPG) that is tuned in a highly sensitive working point, the so-called transition mode, through the deposition of a high refractive index overlay. In particular, a thin film of atactic polystyrene (PS) was dip-coated onto the LPG with a thickness suitable to optimize the LPG sensitivity to refractive index changes of the surrounding medium. Bovine serum albumin was selected as sacrificial layer for its well-known adhesion capabilities to PS surfaces, then glutaraldehyde was used to conjugate IgGs, serving as prototypical bioreceptor, on the device surface. The effectiveness of the immobilization method was assessed by studying the interaction between the immobilized IgG with a suitable anti-IgG. In a preliminary study performed by means of ELISA and surface plasmon resonance, optimal conditions for the biomolecular testing with the LPG were assessed. Four distinct interactions were thus monitored in real time following the shift of the LPG attenuation band. These experiments suggest a novel and interesting biofunctionalization approach of unreactive polymers with applications in immunosensing and basic life science research.


Biosensors and Bioelectronics | 2016

Long period fiber grating nano-optrode for cancer biomarker detection

G. Quero; M. Consales; Renato Severino; Patrizio Vaiano; Alessandra Boniello; Annamaria Sandomenico; Menotti Ruvo; Anna Borriello; Laura Diodato; Simona Zuppolini; M. Giordano; Immacolata Cristina Nettore; Claudia Mazzarella; Annamaria Colao; Paolo Emidio Macchia; Flavio Santorelli; Antonello Cutolo; A. Cusano

We report an innovative fiber optic nano-optrode based on Long Period Gratings (LPGs) working in reflection mode for the detection of human Thyroglobulin (TG), a protein marker of differentiated thyroid cancer. The reflection-type LPG (RT-LPG) biosensor, coated with a single layer of atactic polystyrene (aPS) onto which a specific, high affinity anti-Tg antibody was adsorbed, allowed the label-free detection of Tg in the needle washouts of fine-needle aspiration biopsies, at concentrations useful for pre- and post-operative assessment of the biomarker levels. Analyte recognition and capture were confirmed with a parallel on fiber ELISA-like assay using, in pilot tests, the biotinylated protein and HRP-labeled streptavidin for its detection. Dose-dependent experiments showed that the detection is linearly dependent on concentration within the range between 0 and 4 ng/mL, while antibody saturation occurs for higher protein levels. The system is characterized by a very high sensitivity and specificity allowing the ex-vivo detection of sub ng/ml concentrations of human Tg from needle washouts of fine-needle aspiration biopsies of thyroid nodule from different patients.


Journal of Proteome Research | 2013

Characterization of carbonic anhydrase IX interactome reveals proteins assisting its nuclear localization in hypoxic cells.

Pasquale Buanne; Giovanni Renzone; Francesca Monteleone; Monica Vitale; Simona Maria Monti; Annamaria Sandomenico; Corrado Garbi; Donatella Montanaro; Marina Accardo; Giancarlo Troncone; Miriam Zatovicova; Lucia Csaderova; Claudiu T. Supuran; Silvia Pastorekova; Andrea Scaloni; Giuseppina De Simone; Nicola Zambrano

Carbonic anhydrase IX (CA IX) is a transmembrane protein affecting pH regulation, cell migration/invasion, and survival in hypoxic tumors. Although the pathways related to CA IX have begun to emerge, molecular partners mediating its functions remain largely unknown. Here we characterize the CA IX interactome in hypoxic HEK-293 cells. Most of the identified CA IX-binding partners contain the HEAT/ARM repeat domain and belong to the nuclear transport machinery. We show that the interaction with two of these proteins, namely XPO1 exportin and TNPO1 importin, occurs via the C-terminal region of CA IX and increases with protein phosphorylation. We also demonstrate that nuclear CA IX is enriched in hypoxic cells and is present in renal cell carcinoma tissues. These data place CA IX among the cell-surface signal transducers undergoing nuclear translocation. Accordingly, CA IX interactome involves also CAND1, which participates in both gene transcription and assembly of SCF ubiquitin ligase complexes. It is noteworthy that down-regulation of CAND1 leads to decreased CA IX protein levels apparently via affecting its stability. Our findings provide the first evidence that CA IX interacts with proteins involved in nuclear/cytoplasmic transport, gene transcription, and protein stability, and suggest the existence of nuclear CA IX protein subpopulations with a potential intracellular function, distinct from the crucial CA IX role at the cell surface.


Journal of Virology | 2016

Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

Annamaria Sandomenico; Antonio Leonardi; Rita Berisio; Luca Sanguigno; Giuseppina Focà; Annalia Focà; Alessia Ruggiero; Nunzianna Doti; Livio Muscariello; Daniela Barone; Claudio Farina; Ania M. Owsianka; Luigi Vitagliano; Arvind H. Patel; Menotti Ruvo

ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines.


Oncotarget | 2015

Effects of a novel Nodal-targeting monoclonal antibody in melanoma.

Luigi Strizzi; Annamaria Sandomenico; Naira V. Margaryan; Annalia Focà; Luca Sanguigno; Thomas M. Bodenstine; Grace S. Chandler; David W. Reed; Alina Gilgur; Elisabeth A. Seftor; Richard E.B. Seftor; Zhila Khalkhali-Ellis; Antonio Leonardi; Menotti Ruvo; Mary J.C. Hendrix

Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.


Biochemical Journal | 2009

Generation and functional characterization of a BCL10-inhibitory peptide that represses NF-κB activation

Daniela Marasco; Romania Stilo; Annamaria Sandomenico; Simona Maria Monti; Barbara Tizzano; Antonia De Capua; Ettore Varricchio; Domenico Liguoro; Tiziana Zotti; Silvestro Formisano; Menotti Ruvo; Pasquale Vito

The molecular complex containing BCL10 and CARMA [CARD (caspase recruitment domain)-containing MAGUK (membrane-associated guanylate kinase)] proteins has recently been identified as a key component in the signal transduction pathways that regulate activation of the transcription factor NF-kappaB (nuclear factor kappaB) in lymphoid and non-lymphoid cells. Assembly of complexes containing BCL10 and CARMA proteins relies on homophilic interactions established between the CARDs of these proteins. In order to identify BCL10-inhibitory peptides, we have established a method of assaying peptides derived from the CARD of BCL10 in binding competition assays of CARD-CARD self-association. By this procedure, a short peptide corresponding to amino acid residues 91-98 of BCL10 has been selected as an effective inhibitor of protein self-association. When tested in cell assays for its capacity to block NF-kappaB activation, this peptide represses activation of NF-kappaB mediated by BCL10, CARMA3 and PMA/ionomycin stimulation. Collectively, these results indicate that residues 91-98 of BCL10 are involved in BCL10 self-association and also participate in the interaction with external partners. We also show that blocking of the CARD of BCL10 may potentially be used for the treatment of pathological conditions associated with inappropriate NF-kappaB activation.

Collaboration


Dive into the Annamaria Sandomenico's collaboration.

Top Co-Authors

Avatar

Menotti Ruvo

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Nunzianna Doti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angela Chambery

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Caporale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Focà

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Annalia Focà

National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Giordano

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge