Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Alexandre is active.

Publication


Featured researches published by Anne Alexandre.


Geochimica et Cosmochimica Acta | 1997

Plant impact on the biogeochemical cycle of silicon and related weathering processes

Anne Alexandre; Jean-Dominique Meunier; Fabrice Colin; Jean-Mathias Koud

Abstract The contribution of plants to the biogeochemical cycle of Si and related weathering processes was studied in an equatorial rainforest ecosystem (Congo) where the biologic turnover of Si is high (58 to 76 kg/ha/y). Litterfall leaves, a soil profile and groundwaters were analysed. Phytoliths and organic matter have a similar distribution with depth in the soil profile. The model of a bicompartmental distribution of organic matter is applied to phytolith distribution and shows that about 92% of the biogenic silica input is rapidly recycled while about 8% of the biogenic silica input supplies a stable pool of phytoliths, with a lower turnover. Reprecipitation of silica was observed at the base of the soil profile, indicating a local geochemical environment that is oversaturated with respect to amorphous silica. A balance in biogeochemical cycle of Si requires that the vegetation absorb dissolved silicon released from weathering of minerals, which otherwise would be available for mineral neoformation or export from the profile towards regional drainages. Plant uptake of Si increases the chemical weathering rate without increasing the denudation rate. This study shows that the uptake, storage, and release of Si by the vegetation have to be taken into account when using dissolved Si for tracing chemical weathering dynamics.


Palaeogeography, Palaeoclimatology, Palaeoecology | 1997

Phytoliths : indicators of grassland dynamics during the late Holocene in intertropical Africa

Anne Alexandre; Jean-Dominique Meunier; Anne-Marie Lézine; Annie Vincens; Dominique Schwartz

Abstract The reconstruction of African tropical grassland history during the late Holocene can be carried out using phytolith analysis. Fossil phytolith assemblages from Lake Guiers, in the Sahelian region of Senegal, and from Lake Sinnda, in the Guineo-Congolian region of Congo were investigated. The results are interpreted on the basis of modern phytolith assemblages from the same regions and compared to pollen data previously obtained. Tall or short grass associations are discriminated by their phytolith index Iph(%) = saddle/(cross + dumbel + saddle), while the density of shrubs and trees is indicated by relative proportions of the dicotyledon phytoliths. The phytolith data emphasize that, in the Guineo-Congolian region around Lake Sinnda, the driest phase of the late Holocene occurred between 4000 and 1200 yr B.P., commencing with the opening of the dense forest and its replacement by a short grass savanna. From ca. 1000 yr B.P., wetter climatic conditions developed, as represented by the setting up of a tall grass savanna woodland. The modern shrub and tall grass savanna was developed ca. 700 yr B.P. In the Sahelian region around Lake Guiers, the driest phase occurred after about 2000 yr B.P. and has not been followed by moister conditions. A tall grass savanna woodland was gradually replaced by a shrub and short grass savanna which still occurs. A short period of development of swampy vegetation, which can be related to a lake level change, interrupted the semi-arid adaptation of the vegetation, between about 2000 yr B.P. and the present.


Palaeogeography, Palaeoclimatology, Palaeoecology | 1999

Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia

Doris Barboni; Raymonde Bonnefille; Anne Alexandre; Jean-Dominique Meunier

Phytolith assemblage analysis offers the potential to refine our knowledge of paleoecosystems where grasses and sedges predominate. In this work, Holocene and Pleistocene sediments from an arid tropical region in Ethiopia have been analyzed for their phytolith content, presented as detailed counts and diagrams according to the Twiss classification. The aim is to test the usefulness of phytolith assemblages to indicate paleoenvironments at Middle Awash, where fossil pollen grains are poorly preserved in sediments that yielded abundant archaeological remains. The vegetation in the Middle Awash subdesertic valley is currently a shrub steppe dominated by C4 grasses adapted to arid conditions, with a narrow riparian forest limited to the Awash River. Our results show that modern surface samples, Holocene and Pleistocene sediments contain well-preserved and different phytolith assemblages, and therefore that no translocation processes from modern soil to geological strata seem to occur. Fossil records and modern assemblages are interpreted using phytolith ratios to estimate the density of the tree cover, the aridity and the proportion of C3 versus C4 grasses, as applied to phytolith assemblages from North America and West Africa. The phytolith assemblages from modern soil samples correctly reflect the proportion of trees and shrubs versus grasses, different in the riparian vegetation and the shrub steppe. Modern phytolith assemblages appear to be a mixed signature of local and regional vegetation. Phytolith analysis of the Holocene sample suggests a grassland, where the grass community is constituted by the Chloridoideae subfamily, adapted to warm and dry conditions and where C3-Pooideae cover the highlands. Phytolith analysis of the Pleistocene sample evidences grassland formation with scattered woody elements, where C4-Panicoideae grasses, adapted to warm and humid conditions dominate the grass cover. However, these conclusions need to be confirmed by more complete study on phytolith assemblages from modern vegetation from Ethiopia.


Quaternary Research | 2003

Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation

Claire Delhon; Anne Alexandre; Jean-François Berger; Stéphanie Thiébault; Jacques-Léopold Brochier; Jean-Dominique Meunier

The reliability of phytolith assemblage analysis for characterizing Mediterranean vegetation is investigated in this study. Phytolith assemblages are extracted from modern and buried Holocene soils from the middle Rhone valley (France). The relation between modern phytolith assemblages and the surrounding vegetation, as well as between fossil assemblages and contemporaneous vegetation, already reconstructed through other proxies, is discussed. We demonstrate that the main northwestern Mediterranean biomes are well distinguished by soil phytolith assemblage analysis. In particular, the density of pine and nonconiferous trees (densities expressed relatively to the grass cover) and the overall degree of opening of the vegetation appear well recorded by three phytolith indexes. North Mediterranean vegetation changes during the Holocene period, mainly tree line shifts, pine wood development and deforestation are poorly documented, due to the scarcity of proxy-preserving sites. Phytolith assemblage analysis of soils, buried soils, and sediments appears to be a promising technique to fill this gap.


Radiocarbon | 2010

The Phytolith 14C Puzzle: A Tale of Background Determinations and Accuracy Tests

Guaciara M. Santos; Anne Alexandre; Heloisa H G Coe; Paul Reyerson; John Southon; Cacilda N. de Carvalho

Over the past decades, analysis of occluded carbon in phytoliths (opaline silica mineral bodies that form in and between plant cells) has become a workhorse of paleoclimate and archaeological studies. Since different plant types exhibit distinctive phytolith morphologies, their assemblages are used in identifying vegetation histories or food culture adaptations. A few direct radiocarbon AMS measurements of phytoliths have been carried out, but these measurements are difficult due to the low concentrations of phytoliths in some plant species, and the small amount of C per phytolith (<2%). In addition, no phytoliths samples of a known 14C age are available to verify measurement accuracy and precision, and to check sample prep- aration protocols. Background corrections are also difficult to address due to the lack of suitable material. In this work, we designed a procedure to quantify a suitable blank using SiO2 powder samples (close to the opal structure, and free of 14C). The full phytolith extraction showed high carbon contamination components: a) ~3 g of modern C and ~2 g of dead C. We also performed accuracy tests on large phytolith-occluded carbon samples extracted from soils and harvested plants. The unex- pected 14C ages in some of the results triggered further investigations of possible sources of carbon contamination.


Analytical Chemistry | 2008

IR Laser Extraction Technique Applied to Oxygen Isotope Analysis of Small Biogenic Silica Samples

Julien Crespin; Anne Alexandre; Florence Sylvestre; Corinne Sonzogni; Christine Paillès; Vincent Garreta

An IR-laser fluorination technique is reported here for analyzing the oxygen isotope composition (delta18O) of microscopic biogenic silica grains (phytoliths and diatoms). Performed after a controlled isotopic exchanged (CIE) procedure, the laser fluorination technique that allows one to visually check the success of the fluorination reaction is faster than the conventional fluorination technique and allows analyzing delta18O of small to minute samples (1.6-0.3 mg) as required for high-resolution paleoenvironmental reconstructions. The long-term reproducibility achieved with the IR laser-heating fluorination/O2 delta18O analysis is lower than or equal to +/-0.26 per thousand (1 SD; n = 99) for phytoliths and +/-0.17 per thousand (1 SD; n = 47) for diatoms. When several CIE are taken into account in the SD calculation, the resulting reproducibility is lower than or equal to +/-0.51 per thousand for phytoliths (1 SD; n = 99; CIE > 5) and +/-0.54 per thousand (1 SD; n = 47; CIE = 13) for diatoms. A minimum reproducibility of +/-0.5 per thousand leads to an estimated uncertainty on delta18Osilica close to +/-0.5 per thousand. Resulting uncertainties on reconstructed temperature and delta18Oforming water are, respectively, +/-2 degrees C and +/-0.5 per thousand and fit in the precisions required for intertropical paleoenvironmental reconstructions. Several methodological points such as optimal extraction protocols and the necessity or not of performing two CIE prior to oxygen extraction are assessed.


Bulletin De La Societe Geologique De France | 2001

Interet de l'etude du cycle biogeochimique du silicium pour interpreter la dynamique des sols tropicaux

Jean-Dominique Meunier; Anne Alexandre; Fabrice Colin; Jean-Jacques Braun

Recent studies on the biogeochemical cycle of silica put new constraints into models of genesis and evolution of silica in tropical environments. The role of plants in weathering mass balances are illustrated by phytolith studies. In Dimonika (Congo) latosols, dissolved silica originates mainly from the dissolution of phytoliths rather than from the dissolution of non-biogenic silicates. In andosols from La Reunion island (Indian Ocean), a 15 cm thick, biogenic silica accumulation formed within 4000 years from bamboo forests fires. The turn-over of silica by plants must therefore be taken into account in studies of weathering rates. Weathering rates of trachytic ash layers in La Reunion island show that all the primary minerals are destroyed and that 50% of amorphous secondary Al/Si products are transformed into halloysite. Theses rates, which are faster than the ones obtained in the Hawaii islands, may strongly influence the turn-over of carbon in soils. Besides, phytoliths preserved from dissolution may help to decipher the records of environmental changes in soils. In Salitre (Brazil), the phytolith distribution has been calibrated with charcoal and pollens. The age of phytoliths, which increases with depth, allow to trace the savanna/forest changes.


Scientific Reports | 2017

Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles

Armand Masion; Anne Alexandre; Fabio Ziarelli; Stéphane Viel; Guaciara M. Santos

The determination of the chemical nature of the organic matter associated with phytoliths remains a challenge. This difficulty mainly stems from amounts of organic carbon (C) that are often well below the detection limit of traditional spectroscopic tools. Conventional solid-state 13C Nuclear Magnetic Resonance (NMR) is widely used to examine the nature and structure of organic molecules, but its inherent low sensitivity prohibits the observation of diluted samples. The recent advent of commercial microwave source in the terahertz range triggered a renewed interest in the Dynamic Nuclear Polarization (DNP) technique to improve the signal to noise ratio of solid-state NMR experiments. With this technique, the 13C spectrum of a phytolith sample containing 0.1% w/w C was obtained overnight with sufficient quality to permit a semi-quantitative analysis of the organic matter, showing the presence of peptides and carbohydrates as predominant compounds. Considering the natural abundance of the 13C isotope, this experiment demonstrates that DNP NMR is sufficiently sensitive to observe spin systems present in amounts as low as a few tens of ppm.


Anais Da Academia Brasileira De Ciencias | 2015

Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge

Marcela C. Matteuzzo; Cecília Volkmer-Ribeiro; Angélica Fortes Drummond Chicarino Varajão; César Augusto Chicarino Varajão; Anne Alexandre; Demetrio Luis Guadagnin; Ariana Cristina Santos Almeida

Adverse natural conditions will, generally, induce gemmulation in freshwater sponges. Because of this environmental dependence, gemmoscleres are given exceptional value in taxonomic, ecological and paleoenvironmental studies. Other spicules categories such as microscleres and beta megascleres have received little attention with regard to their occurrence and function during the sponge biological cycle. Metania spinata, a South American species common to bog waters in the Cerrado biome, produces alpha and beta megascleres, microscleres and gemmoscleres. To detect the environmental factors triggering the production of all these kinds of spicules, the species annual seasonal cycle was studied. Artificial substrates were devised, supplied with gemmules and placed in Lagoa Verde pond which contained a natural population of M. spinata. Field monitoring was conducted for eight months in order to observe the growth of sponges and spicules formation. Samples of water were taken monthly for physical and chemical parameters determination. The appearance of the alpha megascleres was sequentially followed by that of microscleres, gemmoscleres and beta megascleres. The first ones built the new sponge skeleton, the last three were involved in keeping inner moisture in the sponge body or its gemmules. The water level, temperature and the silicon (Si) concentration in the pond were the most important factors related to this sequential production of spicules, confirming environmental reconstructions based on the presence or absence of alpha megascleres and gemmoscleres in past sediments.


Annals of Botany | 2005

International Code for Phytolith Nomenclature 1.0

M. Madella; Anne Alexandre; T. Ball

Collaboration


Dive into the Anne Alexandre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Reyerson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Webb

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joël Guiot

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge