Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Beauvais is active.

Publication


Featured researches published by Anne Beauvais.


Cellular Microbiology | 2007

An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus

Anne Beauvais; Christine Schmidt; Stéphanie Guadagnini; Pascal Roux; Emmanuelle Perret; Christine Henry; Sophie Paris; Adeline Mallet; Marie-Christine Prévost; Jean Paul Latgé

Pulmonary infections due to Aspergillus fumigatus result from the development of a colony of tightly associated hyphae in contact with the air, either in the alveoli (invasive aspergillosis) or in an existing cavity (aspergilloma). The fungal ball observed in vivo resembles an aerial colony obtained in agar medium in vitro more than a mycelial mass obtained in liquid shaken conditions that have been classically used to date to study A. fumigatus physiology. For this reason, we embarked on an analysis of the characteristics of A. fumigatus colonies grown in aerial static conditions. (i) Under static aerial conditions, mycelial growth is greater than in shaken, submerged conditions. (ii) The colony surface of A. fumigatus revealed the presence of an extracellular hydrophobic matrix that acts as a cohesive linkage bonding hyphae into a contiguous sheath. (iii) The extracellular matrix is composed of galactomannan, α1,3 glucans, monosaccharides and polyols, melanin and proteins including major antigens and hydrophobins. (iv) A. fumigatus colonies were more resistant to polyenes than shake, submerged mycelium. This is the first analysis of the three dimensional structure of a mycelial colony. Knowledge of this multicellular organization will impact our future understanding of the pathobiology of aerial mold pathogens.


Cellular Microbiology | 2010

In vivo biofilm composition of Aspergillus fumigatus.

Céline Loussert; Christine Schmitt; Marie-Christine Prévost; Viviane Balloy; Elie Fadel; Bruno Philippe; Catherine Kauffmann-Lacroix; Jean Paul Latgé; Anne Beauvais

The in vivo composition of the mycelial extracellular matrix (ECM) of Aspergillus fumigatus during host invasion is reported here for the first time. A new galactosaminogalactan and the galactomannan were the major polysaccharides of the in vivo ECM. The composition of the ECM in vivo varied with the aspergillosis pathologies.


Journal of Immunology | 2009

Immune Sensing of Aspergillus fumigatus Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination

Silvia Bozza; Cécile Clavaud; Gloria Giovannini; Thierry Fontaine; Anne Beauvais; Jacqueline Sarfati; Carmen D'Angelo; Katia Perruccio; Pierluigi Bonifazi; Silvia Zagarella; Silvia Moretti; Francesco Bistoni; Jean-Paul Latgé; Luigina Romani

The ability of the fungus Aspergillus fumigatus to activate, suppress, or subvert host immune response during life cycle in vivo through dynamic changing of cell wall structure and secretion implicates discriminative immune sensing of distinct fungal components. In this study, we have comparatively assessed secreted- and membrane-anchored proteins, glycolipids, and polysaccharides for the ability to induce vaccine-dependent protection in transplanted mice and Th cytokine production by human-specific CD4+ T cell clones. The results show that the different fungal components are endowed with the distinct capacity to activate Th cell responses in mice and humans, with secreted proteins inducing Th2 cell activation, membrane proteins Th1/Treg, glycolipids Th17, and polysaccharides mostly IL-10 production. Of interest, the side-by-side comparison revealed that at least three fungal components (a protease and two glycosylphosphatidylinositol-anchored proteins) retained their immunodominant Th1/Treg activating potential from mice to humans. This suggests that the broadness and specificity of human T cell repertoire against the fungus could be selectively exploited with defined immunoactive Aspergillus Ags.


Medical Mycology | 2005

Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus

Jean Paul Latgé; Isabelle Mouyna; F. Tekaia; Anne Beauvais; Jean-Paul Debeaupuis; W. Nierman

The cell wall of Aspergillus fumigatus is composed of a branched beta1,3 glucan covalently bound to chitin, beta1,3, beta1,4 glucans, and galactomannan, that is embedded in an amorphous cement composed of alpha1,3 glucan, galactomannan and polygalactosamin. The mycelial cell wall of A. fumigatus is very different from the yeast Saccharomyces cerevisiae cell wall, and in particular lacks beta1,6 glucans and proteins covalently bound to cell wall polysaccharides. The differences in cell wall composition between the mould A. fumigatus and the yeast S. cerevisiae are also reflected at the genomic level where unique features have been identified in A. fumigatus. A single gene codes for the glucan synthase catalytic subumit; this finding has lead to the development of a RNAi methodology for the disruption of essential genes in A. fumigatus. In contrast to the glucan synthase, multiple genes have been found in the chitin synthase and the alpha glucan synthase families; in spite of homologous sequences, each gene in each family have very different function. Similarly homologous mannosyltransferase genes are found in yeast and moulds but they lead to the synthesis of very different N-mannan structures. This chemo-genomic comparative analysis has also suggested that GPI-anchored proteins do not have a role of linker in the three dimensional organization of the fungal cell wall.


Molecular Microbiology | 2005

Deletion of GEL2 encoding for a β(1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus

Isabelle Mouyna; Willy Morelle; Marina Vai; Michel Monod; Barbara Léchenne; Thierry Fontaine; Anne Beauvais; Jacqueline Sarfati; Marie-Christine Prévost; Christine Henry; Jean-Paul Latgé

The first fungal glycosylphosphatidylinositol an‐chored β(1–3)glucanosyltranferase (Gel1p) has been described in Aspergillus fumigatus and its encoding gene GEL1 identified. Glycosylphosphatidylinositol‐anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. We characterize here GEL2, a homologue of GEL1. Both homologues share common characteristics: (i) GEL1 and GEL2 are constitutively expressed during over a range of growth conditions; (ii) Gel2p is also a putative GPI‐anchored protein and shares the same β(1–3)glucanosyltransferase activity as Gel1p and (iii) GEL2, like GEL1, is able to complement the Δgas1 deletion in Saccharomyces cerevisiae confirming that Gelp and Gasp have the same enzymatic activity. However, disruption of GEL1 did not result in a phenotype whereas a Δgel2 mutant and the double mutant Δgel1Δgel2 exhibit slower growth, abnormal conidiogenesis, and an altered cell wall composition. In addition, the Δgel2 and the Δgel1Δgel2 mutant have reduced virulence in a murine model of invasive aspergillosis. These data suggest for the first time that β(1–3)glucanosyltransferase activity is required for both morphogenesis and virulence in A. fumigatus.


Journal of Biological Chemistry | 1997

Biochemical and Antigenic Characterization of a New Dipeptidyl-Peptidase Isolated from Aspergillus fumigatus

Anne Beauvais; Michel Monod; Jean-Paul Debeaupuis; Michel Diaquin; Hidemitsu Kobayashi; Jean-Paul Latgé

A novel dipeptidyl-peptidase (DPP V) was purified from the culture medium of Aspergillus fumigatus This is the first report of a secreted dipeptidyl-peptidase. The enzyme had a molecular mass of 88 kDa and contained approximately 9 kDa of N-linked carbohydrate. The expression and secretion of dipeptidyl-peptidase varied with the growth conditions; maximal intra- and extracellular levels were detected when the culture medium contained only proteins or protein hydrolysates in the absence of sugars. The gene of DPP V was cloned and showed significant sequence homology to other eukaryotic dipeptidyl-peptidase genes. Unlike the other dipeptidyl-peptidases, which are all intracellular, DPP V contained a signal peptide. Like the genes of other dipeptidyl-peptidases, that of DPP V displayed the consensus sequences of the catalytic site of the nonclassical serine proteases. The biochemical properties of native and recombinant DPP V obtained in Pichia pastoris were unique and were characterized by a substrate specificity limited to the hydrolysis of X-Ala, His-Ser, and Ser-Tyr dipeptides at a neutral pH optimum. In addition, we showed that DPP V is identical to one of the two major antigens used for the diagnosis of aspergillosis.


Molecular Microbiology | 2007

Loss of cell wall alpha(1‐3) glucan affects Cryptococcus neoformans from ultrastructure to virulence

Amy J. Reese; Aki Yoneda; Julia Breger; Anne Beauvais; Hong Liu; Cara L. Griffith; Indrani Bose; Myoung-Ju Kim; Colleen Skau; Sarah Yang; Julianne A. Sefko; Masako Osumi; Jean-Paul Latgé; Eleftherios Mylonakis; Tamara L. Doering

Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via α(1‐3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow in a mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall.


PLOS Pathogens | 2013

Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System

Fabrice N. Gravelat; Anne Beauvais; Hong Liu; Mark J. Lee; Brendan D. Snarr; Dan Chen; Wenjie Xu; Ilia Kravtsov; Christopher M.Q. Hoareau; Ghyslaine Vanier; Mirjam Urb; Paolo Campoli; Qusai Al Abdallah; Mélanie Lehoux; Josée C. Chabot; Marie Claude Ouimet; Stefanie D. Baptista; Jörg H. Fritz; William C. Nierman; Jean Paul Latgé; Aaron P. Mitchell; Scott G. Filler; Thierry Fontaine; Donald C. Sheppard

Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis.


Eukaryotic Cell | 2012

Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus

John G. Gibbons; Anne Beauvais; Remi Beau; Kriston L. McGary; Jean-Paul Latgé; Antonis Rokas

ABSTRACT Aspergillus fumigatus is the most common and deadly pulmonary fungal infection worldwide. In the lung, the fungus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix. To identify candidate genes involved in this biofilm (BF) growth, we used RNA-Seq to compare the transcriptomes of BF and liquid plankton (PL) growth. Sequencing and mapping of tens of millions sequence reads against the A. fumigatus transcriptome identified 3,728 differentially regulated genes in the two conditions. Although many of these genes, including the ones coding for transcription factors, stress response, the ribosome, and the translation machinery, likely reflect the different growth demands in the two conditions, our experiment also identified hundreds of candidate genes for the observed differences in morphology and pathobiology between BF and PL. We found an overrepresentation of upregulated genes in transport, secondary metabolism, and cell wall and surface functions. Furthermore, upregulated genes showed significant spatial structure across the A. fumigatus genome; they were more likely to occur in subtelomeric regions and colocalized in 27 genomic neighborhoods, many of which overlapped with known or candidate secondary metabolism gene clusters. We also identified 1,164 genes that were downregulated. This gene set was not spatially structured across the genome and was overrepresented in genes participating in primary metabolic functions, including carbon and amino acid metabolism. These results add valuable insight into the genetics of biofilm formation in A. fumigatus and other filamentous fungi and identify many relevant, in the context of biofilm biology, candidate genes for downstream functional experiments.


Medical Mycology | 2011

Aspergillus fumigatus biofilms in the clinical setting

Frank-Michael C. Müller; Marc Seidler; Anne Beauvais

We discuss in this work the role of Aspergillus biofilms in the clinical setting by reviewing the most recent findings on this topic. Aspergillus fumigatus can produce in vitro an extracellular hydrophobic matrix with typical biofilm characteristics under all static conditions tested, i.e., agar media, polystyrene and bronchial epithelial cells. Under static conditions the mycelial growth is greater than in shaken, submerged conditions. The extracellular matrix (ECM) is composed of galactomannan, α-1,3-glucans, monosaccharides and polyols, melanin and proteins including major antigens and hydrophobins. Typical biofilm structures were observed in the aspergillomas from two patients and in a murine model of invasive pulmonary aspergillosis. The results indicate that α-1,3-glucans plays a predominant role in the agglutination of the hyphae together in aerial conditions, and that nutrient starvation was responsible for mycelial death in aspergilloma. Melanin was produced during the infection, suggesting that this pigment is necessary for lung tissue invasion. All antifungal drugs are significantly less effective when A. fumigatus is grown under biofilm vs. planktonic conditions. Chronic persistence of a unique genotype of A. fumigatus in the respiratory tract of CF-patients and the presence of an ECM in vivo may have some therapeutical application for aspergillosis. The most appropriate antifungal drug should not be selected only on the basis of its efficiency to kill in vitro grown fungal cells, but also on its ability to penetrate the ECM.

Collaboration


Dive into the Anne Beauvais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge