Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishukumar Aimanianda is active.

Publication


Featured researches published by Vishukumar Aimanianda.


Nature | 2009

Surface hydrophobin prevents immune recognition of airborne fungal spores

Vishukumar Aimanianda; Jagadeesh Bayry; Silvia Bozza; Olaf Kniemeyer; Katia Perruccio; Sri Ramulu Elluru; Cécile Clavaud; Sophie Paris; Axel A. Brakhage; Srini V. Kaveri; Luigina Romani; Jean-Paul Latgé

The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 109 per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface ‘rodlet layer’ is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface ‘rodlet/hydrophobin layer’ either chemically (using hydrofluoric acid), genetically (ΔrodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.


PLOS Pathogens | 2010

Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

Sandra Bruns; Olaf Kniemeyer; Mike Hasenberg; Vishukumar Aimanianda; Sandor Nietzsche; Andreas Thywißen; Andreas Jeron; Jean-Paul Latgé; Axel A. Brakhage; Matthias Gunzer

Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest that it does not play a major role in killing this fungus. Instead, NETs may have a fungistatic effect and may prevent further spreading.


PLOS Pathogens | 2012

Hydrophobins--unique fungal proteins.

Jagadeesh Bayry; Vishukumar Aimanianda; J. Iñaki Guijarro; Margaret Sunde; Jean Paul Latgé

Microorganisms are often covered by a proteinaceous surface layer that serves as a sieve for external molecular influx, as a shield to protect microbes from external aggression, or as an aid to help microbial dispersion. In bacteria, the latter is called the S-layer, in Actinomycetes, the rod-like fibrillar layer, and in fungi, the rodlet layer [1]. The self-assembly properties and remarkable structural and physicochemical characteristics of hydrophobin proteins underlie the multiple roles played by these unique proteins in fungal biology.


PLOS Pathogens | 2009

A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus

Daryl L. Richie; Lukas Hartl; Vishukumar Aimanianda; Michael S. Winters; Kevin K. Fuller; Michael D. Miley; Stephanie White; Jason W. McCarthy; Jean Paul Latgé; Marta Feldmesser; Judith C. Rhodes; David S. Askew

Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy.


Future Microbiology | 2009

Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization

Amandine Gastebois; Cécile Clavaud; Vishukumar Aimanianda; Jean-Paul Latgé

Aspergillus fumigatus is the most prevalent thermophilic inhabitants of decaying vegetation and one of the most important human opportunistic fungal pathogens. Like other fungi, A. fumigatus cells are covered by a cell wall, which is both a protective, rigid exoskeleton and a dynamic structure, undergoing constant modification depending on its environment. The cell wall, in the majority of fungi, is composed of polysaccharides, and understanding the biochemical organization and biogenesis of an A. fumigatus cell wall is essential as this envelop is continuously in contact with the environment/host cell and acts as a sieve and reservoir for molecules, such as enzymes and toxins that play an active role during infection. This article is intended to give an overview of the biosynthesis of constituent cell wall polysaccharides and their postsynthetic modification in A. fumigatus, it also discusses the antifungal drugs that affect cell wall polysaccharide biosynthesis.


Journal of Immunology | 2013

The RodA Hydrophobin on Aspergillus fumigatus Spores Masks Dectin-1– and Dectin-2–Dependent Responses and Enhances Fungal Survival In Vivo

Steven de Jesus Carrion; Sixto M. Leal; Mahmoud A. Ghannoum; Vishukumar Aimanianda; Jean Paul Latgé; Eric Pearlman

Aspergillus and Fusarium species are important causes of fungal infections worldwide. Airborne spores (conidia) of these filamentous fungi express a surface protein that confers hydrophobicity (hydrophobin) and covers cell wall components that would otherwise induce a host immune cell response. Using a mutant Aspergillus fumigatus strain (ΔrodA) that does not express the RodA hydrophobin, and Aspergillus and Fusarium conidia from clinical isolates that were treated with hydrofluoric acid (which removes the A. fumigatus RodA protein), we observed increased surface exposure of β1,3-glucan and α-mannose on Aspergillus and Fusarium conidia. We also found that ΔrodA and hydrofluoric acid–treated conidia stimulate significantly higher NF-κB p65 nuclear translocation and cytokine production by macrophages from C57BL/6, but not from Dectin-1−/− or Dectin-2−/− mice. Using a murine model of A. fumigatus corneal infection, we showed that ΔrodA conidia induced significantly higher cytokine production, neutrophil infiltration, and more rapid fungal clearance from C57BL/6 corneas compared with the parent G10 strain, which was dependent on Dectin-1 and Dectin-2. Together, these findings identify the hydrophobin RodA as a virulence factor that masks Dectin-1 and Dectin-2 recognition of conidia, resulting in impaired neutrophil recruitment to the cornea and increased fungal survival and clinical disease.


PLOS Pathogens | 2011

HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus.

Xizhi Feng; Karthik Krishnan; Daryl L. Richie; Vishukumar Aimanianda; Lukas Hartl; Nora Grahl; Margaret V. Powers-Fletcher; Minlu Zhang; Kevin K. Fuller; William C. Nierman; Long Jason Lu; Jean-Paul Latgé; Laura A. Woollett; Simon L. Newman; Robert A. Cramer; Judith C. Rhodes; David S. Askew

Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacA i, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireA Δ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus.


Journal of Biological Chemistry | 2009

Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis.

Vishukumar Aimanianda; Cécile Clavaud; Catherine Simenel; Thierry Fontaine; Muriel Delepierre; Jean-Paul Latgé

Despite its essential role in the yeast cell wall, the exact composition of the beta-(1,6)-glucan component is not well characterized. While solubilizing the cell wall alkali-insoluble fraction from a wild type strain of Saccharomyces cerevisiae using a recombinant beta-(1,3)-glucanase followed by chromatographic characterization of the digest on an anion exchange column, we observed a soluble polymer that eluted at the end of the solvent gradient run. Further characterization indicated this soluble polymer to have a molecular mass of approximately 38 kDa and could be hydrolyzed only by beta-(1,6)-glucanase. Gas chromatography mass spectrometry and NMR ((1)H and (13)C) analyses confirmed it to be a beta-(1,6)-glucan polymer with, on average, branching at every fifth residue with one or two beta-(1,3)-linked glucose units in the side chain. This polymer peak was significantly reduced in the corresponding digests from mutants of the kre genes (kre9 and kre5) that are known to play a crucial role in the beta-(1,6)-glucan biosynthesis. In the current study, we have developed a biochemical assay wherein incubation of UDP-[(14)C]glucose with permeabilized S. cerevisiae yeasts resulted in the synthesis of a polymer chemically identical to the branched beta-(1,6)-glucan isolated from the cell wall. Using this assay, parameters essential for beta-(1,6)-glucan synthetic activity were defined.Despite its essential role in the yeast cell wall, the exact composition of the β-(1,6)-glucan component is not well characterized. While solubilizing the cell wall alkali-insoluble fraction from a wild type strain of Saccharomyces cerevisiae using a recombinant β-(1,3)-glucanase followed by chromatographic characterization of the digest on an anion exchange column, we observed a soluble polymer that eluted at the end of the solvent gradient run. Further characterization indicated this soluble polymer to have a molecular mass of ∼38 kDa and could be hydrolyzed only by β-(1,6)-glucanase. Gas chromatographymass spectrometry and NMR (1H and 13C) analyses confirmed it to be a β-(1,6)-glucan polymer with, on average, branching at every fifth residue with one or two β-(1,3)-linked glucose units in the side chain. This polymer peak was significantly reduced in the corresponding digests from mutants of the kre genes (kre9 and kre5) that are known to play a crucial role in the β-(1,6)-glucan biosynthesis. In the current study, we have developed a biochemical assay wherein incubation of UDP-[14C]glucose with permeabilized S. cerevisiae yeasts resulted in the synthesis of a polymer chemically identical to the branched β-(1,6)-glucan isolated from the cell wall. Using this assay, parameters essential for β-(1,6)-glucan synthetic activity were defined.


Molecular Microbiology | 2010

Members of protein O‐mannosyltransferase family in Aspergillus fumigatus differentially affect growth, morphogenesis and viability

Isabelle Mouyna; Olaf Kniemeyer; Thomas Jank; Céline Loussert; Emilia Mellado; Vishukumar Aimanianda; Anne Beauvais; Dirk Wartenberg; Jacqueline Sarfati; Jagadeesh Bayry; Marie-Christine Prévost; Axel A. Brakhage; Sabine Strahl; Michel Huerre; Jean-Paul Latgé

O‐mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O‐mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.


Mycopathologia | 2014

Aspergillus Cell Wall and Biofilm

Anne Beauvais; Thierry Fontaine; Vishukumar Aimanianda; Jean-Paul Latgé

The fungal cell is surrounded by a cell wall that acts as a sieve and a reservoir for effector molecules that play an active role during infection. This cell wall is essential for fungal growth as well as for resisting host defense mechanisms. The Aspergillus fumigatus cell wall is almost exclusively composed of polysaccharides. The fibrillar core is composed of a branched β-(1,3)-glucan to which chitin, β-(1,3)-/β-(1,4)-glucan, and galactomannan are covalently bound. The alkali-soluble amorphous fraction is mainly composed of α-(1,3)-glucan that has adhesive property and stabilizes the cell wall. Although the same polysaccharides are found in the cell wall of different A. fumigatus morphotypes (conidia and hyphae), their concentration and localization are different. Conidial (the morphotype that mainly enters host respiratory system) cell wall is covered by an outer layer of rodlets and melanin, which confers hydrophobic properties and imparts immunological inertness. In contrast, outer layer of the hypha contains galactosaminogalactan, recently identified as an A. fumigatus virulence factor. The hypha grows either as a network of agglutinated and hydrophobic mass (called mycelium) embedded in an extracellular matrix (ECM) rich in polysaccharides, hydrophobin, and melanin or segregated without ECM.

Collaboration


Dive into the Vishukumar Aimanianda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge