Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Boland is active.

Publication


Featured researches published by Anne Boland.


Nature | 2008

A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

Rayjean J. Hung; James D. McKay; Valerie Gaborieau; Paolo Boffetta; Mia Hashibe; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; Chu Chen; Gary E. Goodman; John K. Field; Triantafillos Liloglou; George Xinarianos; Adrian Cassidy; John R. McLaughlin; Geoffrey Liu; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Kristian Hveem; Lars J. Vatten; Jakob Linseisen

Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 × 10-10). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 × 10-20 overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N′-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.


Nature Genetics | 2008

Lung cancer susceptibility locus at 5p15.33

James D. McKay; Rayjean J. Hung; Valerie Gaborieau; Paolo Boffetta; Amelie Chabrier; Graham Byrnes; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; John R. McLaughlin; Frances A. Shepherd; Alexandre Montpetit; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Lars J. Vatten; Inger Njølstad; Tomas Axelsson; Chu Chen; Gary E. Goodman; Matt J. Barnett; Melissa M. Loomis

We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 × 10−7 and P = 4 × 10−6) and replicated by the independent study series (P = 7 × 10−5 and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.


Nature Genetics | 2009

Genome-wide association study identifies three loci associated with melanoma risk

D. Timothy Bishop; Florence Demenais; Mark M. Iles; Mark Harland; John C. Taylor; Eve Corda; Juliette Randerson-Moor; Joanne F. Aitken; Marie-Françoise Avril; Esther Azizi; Bert Bakker; Giovanna Bianchi-Scarrà; Brigitte Bressac-de Paillerets; Donato Calista; Lisa A. Cannon-Albright; Thomas Chin-a-Woeng; Tadeusz Dębniak; Gilli Galore-Haskel; Paola Ghiorzo; Ivo Gut; Johan Hansson; Marko Hocevar; Veronica Höiom; John L. Hopper; Christian Ingvar; Peter A. Kanetsky; Richard Kefford; Maria Teresa Landi; Julie Lang; Jan Lubinski

We report a genome-wide association study of melanoma conducted by the GenoMEL consortium based on 317K tagging SNPs for 1,650 selected cases and 4,336 controls, with replication in an additional two cohorts (1,149 selected cases and 964 controls from GenoMEL, and a population-based case-control study in Leeds of 1,163 cases and 903 controls). The genome-wide screen identified five loci with genotyped or imputed SNPs reaching P < 5 × 10−7. Three of these loci were replicated: 16q24 encompassing MC1R (combined P = 2.54 × 10−27 for rs258322), 11q14-q21 encompassing TYR (P = 2.41 × 10−14 for rs1393350) and 9p21 adjacent to MTAP and flanking CDKN2A (P = 4.03 × 10−7 for rs7023329). MC1R and TYR are associated with pigmentation, freckling and cutaneous sun sensitivity, well-recognized melanoma risk factors. Common variants within the 9p21 locus have not previously been associated with melanoma. Despite wide variation in allele frequency, these genetic variants show notable homogeneity of effect across populations of European ancestry living at different latitudes and show independent association to disease risk.


Nature Genetics | 2007

A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15

Stephan Menzel; Chad Garner; Ivo Gut; Fumihiko Matsuda; Masao Yamaguchi; Simon Heath; Mario Foglio; Diana Zelenika; Anne Boland; Helen Rooks; Steve Best; Tim D. Spector; Martin Farrall; Mark Lathrop; Swee Lay Thein

F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and β thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 BCL11A quantitative trait locus accounts for 15.1% of the trait variance.


The New England Journal of Medicine | 2008

Effect of 17q21 Variants and Smoking Exposure in Early-Onset Asthma

Emmanuelle Bouzigon; Eve Corda; Hugues Aschard; Marie-Hélène Dizier; Anne Boland; Jean Bousquet; Nicolas Chateigner; F Gormand; Jocelyne Just; Nicole Le Moual; Pierre Scheinmann; Valérie Siroux; Daniel Vervloet; Diana Zelenika; Isabelle Pin; Francine Kauffmann; Mark Lathrop; Florence Demenais

BACKGROUND A genomewide association study has shown an association between variants at chromosome 17q21 and an increased risk of asthma. To elucidate the relationship between this locus and disease, we examined a large, family-based data set that included extensive phenotypic and environmental data from the Epidemiological Study on the Genetics and Environment of Asthma. METHODS We tested 36 single-nucleotide polymorphisms (SNPs) in the 17q21 region in 1511 subjects from 372 families for an association with asthma. We also tested for genetic heterogeneity according to the age at the onset of asthma and exposure to environmental tobacco smoke in early life. RESULTS Eleven SNPs were significantly associated with asthma (P<0.01), of which three (rs8069176, rs2305480, and rs4795400) were strongly associated (P<0.001). Ordered-subset regression analysis led us to select an onset at 4 years of age or younger to classify patients as having early-onset asthma. Association with early-onset asthma was highly significant (P<10(-5) for four SNPs), whereas no association was found with late-onset asthma. With respect to exposure to environmental tobacco smoke in early life, we observed a significant association with early-onset asthma only in exposed subjects (P<5x10(-5) for six SNPs). Under the best-fitting recessive model, homozygous status (GG) at the most strongly associated SNP (rs8069176) conferred an increase in risk by a factor of 2.9, as compared with other genotypes (AG and AA) in the group exposed to environmental tobacco smoke (P=2.8x10(-6); P=0.006 for the test for heterogeneity of the SNP effect on early-onset asthma between groups with tobacco exposure and those without such exposure). CONCLUSIONS This study shows that the increased risk of asthma conferred by 17q21 genetic variants is restricted to early-onset asthma and that the risk is further increased by early-life exposure to environmental tobacco smoke. These findings provide a greater understanding of the functional role of the 17q21 variants in the pathophysiology of asthma.


Molecular Microbiology | 1996

The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes.

Sophie Woestyn; Marie-Paule Sory; Anne Boland; Olivier Lequenne; Guy R. Cornelis

Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N‐terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc‐binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.


Nature Genetics | 2014

Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

Krzysztof Kiryluk; Li Y; Francesco Scolari; Sanna-Cherchi S; Murim Choi; Verbitsky M; Fasel D; Lata S; Sindhuri Prakash; Shapiro S; Fischman C; Holly J. Snyder; Gerald B. Appel; Izzi C; Viola Bf; Dallera N; Del Vecchio L; Barlassina C; Salvi E; F. Bertinetto; A. Amoroso; Savoldi S; Rocchietti M; Alessandro Amore; Licia Peruzzi; R. Coppo; Maurizio Salvadori; Pietro Ravani; Riccardo Magistroni; Ghiggeri Gm

We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geospatial distribution of risk alleles is highly suggestive of multi-locus adaptation, and genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host–intestinal pathogen interactions in shaping the genetic landscape of IgAN.


The EMBO Journal | 1998

TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors.

Maite Iriarte; Marie-Paule Sory; Anne Boland; Aoife P. Boyd; Scott D. Mills; Isabelle Lambermont; Guy R. Cornelis

Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop‐secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock‐out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242–293 of YopN. In contrast with a yopN null mutant, a yopNΔ248–272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation‐control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.


Journal of The American Society of Nephrology | 2010

HLA Has Strongest Association with IgA Nephropathy in Genome-Wide Analysis

John Feehally; Martin Farrall; Anne Boland; Daniel P. Gale; Ivo Gut; Simon Heath; Ashish Kumar; John F. Peden; Patrick H. Maxwell; David L. Morris; Sandosh Padmanabhan; Timothy J. Vyse; Anna Zawadzka; Andrew J. Rees; Mark Lathrop; Peter J. Ratcliffe

Demographic and family studies support the existence of a genetic contribution to the pathogenesis of IgA nephropathy, but results from genetic association studies of candidate genes are inconsistent. To systematically survey common genetic variation in this disease, we performed a genome-wide analysis in a cohort of patients with IgA nephropathy selected from the UK Glomerulonephritis DNA Bank. We used two groups of controls: parents of affected individuals and previously genotyped, unaffected, ancestry-matched individuals from the 1958 British Birth Cohort and the UK Blood Service. We genotyped 914 affected or family controls for 318,127 single nucleotide polymorphisms (SNPs). Filtering for low genotype call rates and inferred non-European ancestry left 533 genotyped individuals (187 affected children) for the family-based association analysis and 244 cases and 4980 controls for the case-control analysis. A total of 286,200 SNPs with call rates >95% were available for analysis. Genome-wide analysis showed a strong signal of association on chromosome 6p in the region of the MHC (P = 1 × 10(-9)). The two most strongly associated SNPs showed consistent association in both family-based and case-control analyses. HLA imputation analysis showed that the strongest association signal arose from a combination of DQ loci with some support for an independent HLA-B signal. These results suggest that the HLA region contains the strongest common susceptibility alleles that predispose to IgA nephropathy in the European population.Demographic and family studies support the existence of a genetic contribution to the pathogenesis of IgA nephropathy, but candidate genes remain unknown. To systematically survey common genetic variation in this disease, we performed a genome-wide analysis in a cohort of patients with IgA nephropathy selected from the UK Glomerulonephritis DNA Bank. We used two groups of controls: parents of affected individuals and previously genotyped, unaffected, ancestry-matched individuals from the 1958 British Birth Cohort and the UK Blood Service. We genotyped 914 affected or family controls for 318,127 single nucleotide polymorphisms (SNPs). Filtering for low genotype call rates and inferred non-European ancestry left 533 genotyped individuals (187 affected children) for the family-based association analysis and 244 cases and 4980 controls for the case-control analysis. A total of 286,200 SNPs with call rates 95% were available for analysis. Genome-wide analysis showed a strong signal of association on chromosome 6p in the region of the MHC (P 1 10 9 ). Both the family-based and case-control analysis showed the two most strongly associated SNPs. HLA imputation analysis showed that the strongest association signal arose from a combination of DQ loci with some support for an independent HLA-B signal. These results suggest that the HLA region contains the strongest common susceptibility alleles that predispose to IgA nephropathy in the European population.


Journal of Biological Chemistry | 2001

Yersinia enterocolitica YopP-induced Apoptosis of Macrophages Involves the Apoptotic Signaling Cascade Upstream of Bid

Geertrui Denecker; Wim Declercq; Cecile Geuijen; Anne Boland; Rachid Benabdillah; Maria van Gurp; Marie-Paule Sory; Peter Vandenabeele; Guy R. Cornelis

Yersinia enterocoliticainduces apoptosis in macrophages by injecting the plasmid-encoded YopP (YopJ in other Yersinia species). Recently it was reported that YopP/J is a member of an ubiquitin-like protein cysteine protease family and that the catalytic core of YopP/J is required for its inhibition of the MAPK and NF-κB pathways. Here we analyzed the YopP/J-induced apoptotic signaling pathway. YopP-mediated cell death could be inhibited by addition of the zVAD caspase inhibitor, but not by DEVD or YVAD. Generation of truncated Bid (tBid) was the first apoptosis-related event that we observed. The subsequent translocation of tBid to the mitochondria induced the release of cytochrome c, leading to the activation of procaspase-9 and the executioner procaspases-3 and -7. Inhibition of the postmitochondrial executioner caspases-3 and -7 did not affect Bid cleavage. Bid cleavage could not be observed in ayopP-deficient Y. enterocolitica strain, showing that this event requires YopP. Disruption of the catalytic core of YopP abolished the rapid generation of tBid, thereby hampering induction of apoptosis by Y. enterocolitica. This finding supports the idea that YopP/J induces apoptosis by directly acting on cell death pathways, rather than being the mere consequence of gene induction inhibition in combination with microbial stimulation of the macrophage.

Collaboration


Dive into the Anne Boland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Gut

Commissariat à l'énergie atomique et aux énergies alternatives

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Böhm

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge