Anne Buschmann
Friedrich Loeffler Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Buschmann.
The Journal of Infectious Diseases | 2005
Anne Buschmann; Martin H. Groschup
Transgenic mice expressing bovine prion protein (PrP)(C) (Tgbov XV mice) display remarkably shorter incubation times for cattle-derived bovine spongiform encephalopathy (BSE) infectivity than do nontransgenic mice. To verify that this phenomenon reflects increased sensitivity, we challenged Tgbov XV mice and conventional RIII mice with a BSE brain-stem homogenate of known infectivity titer in cattle. An end-point titration experiment in Tgbov XV mice revealed their superior sensitivity, which exceeded that of RIII mice by at least 10,000-fold and even that of cattle by approximately10-fold. Moreover, Tgbov XV mice were challenged with various tissues from cattle with end-stage clinical BSE, and infectivity was found only in the central and peripheral nervous system and not in lymphatic tissues; the only exception was the Peyers patches of the distal ileum, which most likely are the site of entry for BSE infectivity. These results provide further indication that the pathogenesis of BSE in cattle is fundamentally different from that in sheep and mice, due to an exclusive intraneuronal spread of infectivity from the gut to the central nervous system.
Journal of Virology | 2001
Jean-Luc Vilotte; Solange Soulier; Rachid Essalmani; Marie-George Stinnakre; Daniel Vaiman; Laurence Lepourry; José Costa Da Silva; Nathalie Besnard; Mike Dawson; Anne Buschmann; Martin H. Groschup; Stéphanie Petit; Marie-Francoise Madelaine; Sabine Rakatobe; Annick Le Dur; Didier Vilette; Hubert Laude
ABSTRACT The susceptibility of sheep to scrapie is known to involve, as a major determinant, the nature of the prion protein (PrP) allele, with the VRQ allele conferring the highest susceptibility to the disease. Transgenic mice expressing in their brains three different ovine PrPVRQ-encoding transgenes under an endogenous PrP-deficient genetic background were established. Nine transgenic (tgOv) lines were selected and challenged with two scrapie field isolates derived from VRQ-homozygous affected sheep. All inoculated mice developed neurological signs associated with a transmissible spongiform encephalopathy (TSE) disease and accumulated a protease-resistant form of PrP (PrPres) in their brains. The incubation duration appeared to be inversely related to the PrP steady-state level in the brain, irrespective of the transgene construct. The survival time for animals from the line expressing the highest level of PrP was reduced by at least 1 year compared to those of two groups of conventional mice. With one isolate, the duration of incubation was as short as 2 months, which is comparable to that observed for the rodent TSE models with the briefest survival times. No survival time reduction was observed upon subpassaging of either isolate, suggesting no need for adaptation of the agent to its new host. Overexpression of the transgene was found not to be required for transmission to be accelerated compared to that observed with wild-type mice. Conversely, transgenic mice overexpressing murine PrP were found to be less susceptible than tgOv lines expressing ovine PrP at physiological levels. These data argue that ovine PrPVRQ provided a better substrate for sheep prion replication than did mouse PrP. Altogether, these tgOv mice could be an improved model for experimental studies on natural sheep scrapie.
Journal of Clinical Microbiology | 2007
J.G. Jacobs; Jan Langeveld; Anne-Gaëlle Biacabe; Pierluigi Acutis; Mirosław P. Polak; Dolores Gavier-Widén; Anne Buschmann; Maria Caramelli; Cristina Casalone; Maria Mazza; Martin H. Groschup; Jo Hf Erkens; Aart Davidse; Fred G. van Zijderveld; Thierry Baron
ABSTRACT Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrPSc). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrPSc (PrPres), suggesting the existence of at least two additional BSE PrPres variants. These are defined here as the H type and the L type, according to the higher and lower positions of the nonglycosylated PrPres band in Western blots, respectively, compared to the position of the band in classical BSE (C-type) isolates. These molecular PrPres variants, which originated from six different European countries, were investigated together. In addition to the migration properties and glycosylation profiles (glycoprofiles), the H- and L-type isolates exhibited enhanced PK sensitivities at pH 8 compared to those of the C-type isolates. Moreover, H-type BSE isolates exhibited differences in the binding of antibodies specific for N- and more C-terminal PrP regions and principally contained two aglycosylated PrPres moieties which can both be glycosylated and which is thus indicative of the existence of two PrPres populations or intermediate cleavage sites. These properties appear to be consistent within each BSE type and independent of the geographical origin, suggesting the existence of different BSE strains in cattle. The choice of three antibodies and the application of two pHs during the digestion of brain homogenates provide practical and diverse tools for the discriminative detection of these three molecular BSE types and might assist with the recognition of other variants.
PLOS Pathogens | 2007
Raffaella Capobianco; Cristina Casalone; Silvia Suardi; Michela Mangieri; Claudia Miccolo; Lucia Limido; Marcella Catania; Giacomina Rossi; Giuseppe Di Fede; Giorgio Giaccone; Maria Grazia Bruzzone; Ludovico Minati; Cristiano Corona; Pierluigi Acutis; Daniela Gelmetti; Guerino Lombardi; Martin H. Groschup; Anne Buschmann; Gianluigi Zanusso; Salvatore Monaco; Maria Caramelli; Fabrizio Tagliavini
Atypical neuropathological and molecular phenotypes of bovine spongiform encephalopathy (BSE) have recently been identified in different countries. One of these phenotypes, named bovine “amyloidotic” spongiform encephalopathy (BASE), differs from classical BSE for the occurrence of a distinct type of the disease-associated prion protein (PrP), termed PrPSc, and the presence of PrP amyloid plaques. Here, we show that the agents responsible for BSE and BASE possess different biological properties upon transmission to transgenic mice expressing bovine PrP and inbred lines of nontransgenic mice. Strikingly, serial passages of the BASE strain to nontransgenic mice induced a neuropathological and molecular disease phenotype indistinguishable from that of BSE-infected mice. The existence of more than one agent associated with prion disease in cattle and the ability of the BASE strain to convert into the BSE strain may have important implications with respect to the origin of BSE and spongiform encephalopathies in other species, including humans.
PLOS ONE | 2007
Bjoern Seidel; Achim Thomzig; Anne Buschmann; Martin H. Groschup; Rainer Peters; Michael Beekes; Konstantin Terytze
The persistence of infectious biomolecules in soil constitutes a substantial challenge. This holds particularly true with respect to prions, the causative agents of transmissible spongiform encephalopathies (TSEs) such as scrapie, bovine spongiform encephalopathy (BSE), or chronic wasting disease (CWD). Various studies have indicated that prions are able to persist in soil for years without losing their pathogenic activity. Dissemination of prions into the environment can occur from several sources, e.g., infectious placenta or amniotic fluid of sheep. Furthermore, environmental contamination by saliva, excrements or non-sterilized agricultural organic fertilizer is conceivable. Natural transmission of scrapie in the field seems to occur via the alimentary tract in the majority of cases, and scrapie-free sheep flocks can become infected on pastures where outbreaks of scrapie had been observed before. These findings point to a sustained contagion in the environment, and notably the soil. By using outdoor lysimeters, we simulated a contamination of standard soil with hamster-adapted 263K scrapie prions, and analyzed the presence and biological activity of the soil-associated PrPSc and infectivity by Western blotting and hamster bioassay, respectively. Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.
Emerging Infectious Diseases | 2007
Martin H. Groschup; Caroline Lacroux; Anne Buschmann; Gesine Lühken; Jacinthe Mathey; Martin Eiden; Séverine Lugan; Christine Hoffmann; Juan Carlos Espinosa; Thierry Baron; Juan Maria Torres; G. Erhardt; Olivier Andreoletti
We report 2 natural scrapie cases in sheep carrying the ARR/ARR prion genotype, which is believed to confer resistance against classic scrapie and bovine spongiform encephalopathy.
Veterinary Research | 2008
Martin H. Groschup; Anne Buschmann
Until today most prion strains can only be propagated and the infectivity content assayed by experimentally challenging conventional or transgenic animals. Robust cell culture systems are not available for any of the natural and only for a few of the experimental prion strains. Moreover, the pathogenesis of different transmissible spongiform encephalopathies (TSE) can be analysed systematically by using experimentally infected animals. While, in the beginning, animals belonging to the natural host species were used, more and more rodent model species have been established, mostly due to practical reasons. Nowadays, most of these experiments are performed using highly susceptible transgenic mouse lines expressing cellular prion proteins, PrP, from a variety of species like cattle, sheep, goat, cervidae, elk, hamster, mouse, mink, pig, and man. In addition, transgenic mice carrying specific mutations or polymorphisms have helped to understand the molecular pathomechanisms of prion diseases. Transgenic mouse models have been utilised to investigate the physiological role of PrP(C), molecular aspects of species barrier effects, the cell specificity of the prion propagation, the role of the PrP glycosylation, the mechanisms of the prion spread, the neuropathological roles of PrP(C) and of its abnormal isoform PrP(D) (D for disease) as well as the function of PrP Doppel. Transgenic mouse models have also been used for mapping of PrP regions involved in or required for the PrP conversion and prion replication as well as for modelling of familial forms of human prion diseases.
Biological Chemistry | 2004
Thorsten Kuczius; Anne Buschmann; Wenlan Zhang; Helge Karch; Karsten Becker; Georg Peters; Martin H. Groschup
Abstract The conversion of cellular prion protein (PrPC) into its pathological isoform (PrPSc) conveys an increase in hydrophobicity and induces a partial resistance to proteinase K (PK). Interestingly, co-incubation with high copper ion concentrations also modifies the solubility of PrPC and induces a partial PK resistance which was reminiscent of PrPSc. However, concerns were raised whether this effect was not due to a copper-induced inhibition of the PK itself. We have therefore analyzed the kinetics of the formation of PK-resistant PrPC and excluded possible interference effects by removing unbound copper ions prior to the addition of PK by methanol precipitation or immobilization of PrPC followed by washing steps. We found that preincubation of PrPC with copper ions at concentrations as low as 50 µM indeed rendered these proteins completely PK resistant, while control substrates were proteolyzed. No other divalent cations induced a similar effect. However, in addition to this specific stabilizing effect on PrPC, higher copper ion concentrations insolution (> 200 µM) directly blocked the enzymatic activity of PK, possibly by replacing the Ca2+ ions in the active center of the enzyme. Therefore, as a result of this inhibition the proteolytic degradation of PrPC as well as PrPSc molecules was suppressed.
Journal of Proteome Research | 2008
Sanja Ramljak; Abdul R. Asif; Victor W. Armstrong; Arne Wrede; Martin H. Groschup; Anne Buschmann; Walter Schulz-Schaeffer; Walter Bodemer; Inga Zerr
The physiological role of the cellular prion protein (PrP (c)) is still not fully understood. Current evidence strongly suggests that PrP (c) overexpression in different cell lines sensitizes cells to apoptotic stimuli through a p53 dependent pathway. On the other hand, an expression of PrP (c) in PrP (c)-deficient cells undergoing apoptosis exhibited repeatedly antiapoptotic effects. Therefore, the presence/absence and/or the level of PrP (c) expression seem to be critical for the fluctuation between PrP (c)s pro- and antiapoptotic properties. The present study examined whether an overexpression of PrP (c) itself, without addition of any apoptotic agent, can lead to proteome changes that might account for the higher responsiveness to apoptotic stimuli. Beyond this, we examined whether the sole introduction of PrP (c) into PrP (c)-deficient cells could be sufficient to up-regulate antiapoptotic proteins capable of mitigating apoptosis. For this purpose, we used two cell lines, one expressing [human embryonic kidney (HEK) 293 cells] and the other lacking (mouse neuronal PrP (c)-deficient cells) endogenous PrP (c). Protein profiling following transient PrP (c) overexpression in HEK 293 cells revealed a major PrP (c) involvement in regulation of proteins participating in energy metabolism and cellular homeostasis, whereas transient introduction of PrP (c) into mouse neuronal PrP (c)-deficient cells resulted mainly in the regulation of proteins involved in protection against oxidative stress and apoptosis. In addition, we report for the first time that PrP (c) overexpression influenced the regulation of several proteins known to have contributory roles in the pathogenesis of Alzheimer disease (AD). Revealing the correlation between presence/absence and/or different levels of PrP (c) expression with the regulation of certain cellular proteins might further contribute to our understanding of the complex role of PrP (c) in cell physiology.
Veterinary Journal | 2010
Mirosław P. Polak; Magdalena Larska; Jan Langeveld; Anne Buschmann; Martin H. Groschup; Jan F. Zmudzinski
This is the first report of cases of scrapie in Poland. The disease was an atypical phenotype, diagnosed in two aged sheep which were found dead. Brainstem samples from both animals were positive on the applied ELISA rapid test, while the confirmatory immunoblot indicated abnormal banding patterns of protease resistant prion protein (PrP(res)). The genotypes of these sheep were ALRQ/ALHQ and ALRQ/ALRR. The absence of premonitory clinical signs, the advanced age of the affected sheep, the higher concentration of PrP(res) in the cerebellum relative to the obex, the unusual banding profile of the prion protein and its relatively low resistance to proteolytic degradation confirmed the diagnosis of atypical scrapie (Nor98-like) in both cases.