Gesine Lühken
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gesine Lühken.
Emerging Infectious Diseases | 2007
Martin H. Groschup; Caroline Lacroux; Anne Buschmann; Gesine Lühken; Jacinthe Mathey; Martin Eiden; Séverine Lugan; Christine Hoffmann; Juan Carlos Espinosa; Thierry Baron; Juan Maria Torres; G. Erhardt; Olivier Andreoletti
We report 2 natural scrapie cases in sheep carrying the ARR/ARR prion genotype, which is believed to confer resistance against classic scrapie and bovine spongiform encephalopathy.
Archives of Virology | 2004
Gesine Lühken; A. Buschmann; Martin H. Groschup; G. Erhardt
Summary.Prion protein (PrP) genotypes were determined in eight sheep that have been tested positive for atypical scrapie from purebred or crossbred Merinoland sheep flocks in Germany and compared with the PrP genotypes of their flock mates. Two restriction fragment length polymorphism (RFLP) analyses were developed to determine all PRNP haplotypes occurring by variations at codons 136, 154 and 171. At least one copy of the A136H154Q171 (AHQ) allele was found in all scrapie-positive sheep while the frequency of AHQ varied from over 23% to less than 3% in the whole flocks. There was a significant association between PrP genotype and a positive scrapie diagnosis over all flocks, suggesting a high scrapie susceptibility of PrP genotypes including the AHQ allele, at least in sheep of Merinoland type. These results argue that sheep with the AHQ allele are not generally less susceptible to scrapie and support the hypothesis that the influence of this allele on scrapie susceptibility may vary from flock to flock depending on genetic and/or epidemiological factors. This has to be considered when strategies for the eradication of scrapie in sheep are based on PrP genotypes.
Journal of Dairy Science | 2010
A. Caroli; Rita Rizzi; Gesine Lühken; G. Erhardt
Milk protein genetic polymorphisms are often used for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Original Pinzgauer, a dual-purpose (dairy and beef) cattle breed of European origin that was influenced in the past by human movements from different regions as well as by crossbreeding with Red Holstein. A total of 485 milk samples from Original Pinzgauer from Austria (n=275) and Germany (n=210) were typed at milk proteins alpha(S1)-casein, beta-casein, kappa-casein, alpha-lactalbumin, and beta-lactoglobulin by isoelectrofocusing to analyze the genetic variation affecting the protein amino acid charge. The Original Pinzgauer breed is characterized by a rather high genetic variation affecting the amino acid charge of milk proteins, with a total of 15 alleles, 12 of which were found at a frequency >0.05. The most polymorphic protein was beta-casein with 4 alleles detected. The prevalent alleles were CSN1S1*B, CSN2*A(2), CSN1S2*A, CSN3*A, LGB*A, and LAA*B. A relatively high frequency of CSN1S2*B (0.202 in the whole data set) was found, mainly occurring within the C-A(2)-B-A haplotype (in the order CSN1S1-CSN2-CSN1S2-CSN3), which seems to be peculiar to the Original Pinzgauer, possibly because the survival of an ancestral haplotype or the introgression of Bos indicus.
Animal Genetics | 2009
Gesine Lühken; Anna Maria Caroli; E.M. Ibeagha-Awemu; G. Erhardt
The aim of this study was to identify the molecular genetic origin underlying the I variant of alpha(s1)-casein and to develop a DNA-based test for this polymorphism as a tool for genetic analyses independent of milk sample testing. All coding exons and flanking regions of the alpha(s1)-casein gene were sequenced in DNA samples from cattle of known alpha(s1)-casein genotypes (BI, CI, II, CC), determined by isoelectric focusing of milk samples. A nucleotide substitution (A>T) in exon 11 (g.19836A>T) leads to the exchange of Glu with Asp at amino acid position 84 of the mature protein (p.Glu84Asp) and perfectly co-segregated with the presence of the alpha(s1)-casein I variant in the milk of the analysed animals. Genotyping of a total of 680 DNA samples from 31 Bos taurus and Bos indicus cattle breeds and from Bos grunniens, Bison bison and Bison bonasus by restriction fragment length polymorphism analysis revealed the occurrence of Asp at position 84 at low frequencies in Bos taurus and Bos indicus breeds and established its origin from the alpha(s1)-casein C variant (p.Glu192Gly). Ten different intragenic haplotypes in the gene region from intron 8 to intron 12 were observed by sequencing, of which two occurred in Bison bison and one in Bison bonasus only. Using available casein gene complex information, an association of Asp at position 84 to beta-casein A(2) and kappa-casein B was shown in the Bos indicus breed Banyo Gudali. Taken together, we can postulate that the alpha(s1)-casein variant I is caused by a non-synonymous nucleotide substitution in exon 11 of the gene and that it originated within Bos indicus and spread to Bos taurus subsequently.
Molecular and Cellular Probes | 2012
Gesine Lühken
This review gives an overview on ovine and caprine defects/disorders, disease predispositions, production traits and coat colours for which causal gene variants are known. Most phenotypes are inherited autosomal-recessive or dominant and in the majority are caused by single nucleotide substitutions or deletions. Causative sequence variants mainly were identified by sequencing candidate genes in the past, and recently also by whole genome analysis using the ovine 50k SNP chip. While PCR-fragment length polymorphism analyses were developed for the majority of causative sequence variants, other low- to medium-throughput PCR-based methods as PCR-single strand conformation analysis and allele-specific PCR were also established frequently. For processing large sample numbers, high-throughput methods as MALDI-ToF MS or real-time PCR are available for some gene variants. Further progress in development of ovine and caprine genome sequences and SNP chips will be beneficial for the discovery of additional causative variants in these two species.
British Journal of Nutrition | 2013
Felicitas Siebert; Gesine Lühken; J. Pallauf; G. Erhardt
The aim of the present study was to analyse the sequence variability of the porcine Zip4-like Zn transporter gene and the association of identified sequence variants with average daily gain, apparent Zn absorption, plasma Zn concentration and Zn concentration in the liver and pancreas. For the purpose of the study, two different sample sets were used. Set one, which was used for sequencing and association analysis, included mRNA from intestinal tissue from thirty-five piglets of a feeding trial. Sample set two consisted of forty-six samples of genomic DNA from sperm or tissue of wild boars and several pig breeds and was used to genotype animals of different breeds. The sequence analysis of porcine Zip4-like complementary DNA in sample set one revealed the presence of seven nucleotide substitutions. Of these, six were synonymous, whereas a substitution of A with C in exon IX (XM_001925360 c.1430A>C) causes an amino acid exchange from glutamic acid to alanine (p.Glu477Ala). The association analysis revealed no influence of the six synonymous substitutions on Zn values, but the non-synonymous nucleotide exchange significantly increased Zn concentration in the pancreas and apparent Zn absorption of the piglets in week 2 of the feeding trial. The parentage of the piglets and the genotyping results in sample set two suggest a breed-specific presence of the A allele in Piétrain for this amino acid substitution. These results indicate that genotype influences the Zn absorption abilities of individual animals, which should be taken into consideration in animal breeding as well as for the selection of experimental animals.
PLOS ONE | 2012
Gesine Lühken; Katharina Fleck; Alfredo Pauciullo; Maike Huisinga; G. Erhardt
In humans, rodents and horses, pigmentary anomalies in combination with other disorders, notably intestinal aganglionosis, are associated with variants of the endothelin type-B receptor gene (EDNRB). In an inbred Cameroon sheep flock, five white lambs with light blue eyes were sired from the same ram and died within a few hours up to a few days after birth, some of them with signs of intestinal obstruction. The aim of this study was to investigate if the observed hypopigmentation and a possible lethal condition were associated with a molecular change at the ovine EDNRB locus, and to check if such a genetic alteration also occurs in other Cameroon sheep flocks. Sequence analysis revealed a deletion of about 110 kb on sheep chromosome 10, comprising the entire EDNRB gene, on both chromosomes in the two available hypopigmented lambs and on a single chromosome in the two dams and three other unaffected relatives. This micro-chromosomal deletion was also confirmed by quantitative real-time PCR and by fluorescence in situ hybridization. Genotyping of a total of 127 Cameroon sheep in 7 other flocks by duplex PCR did not identify additional carriers of the deletion. Although both hypopigmented lambs available for post-mortem examination had a considerably dilated cecum and remaining meconium, histopathological examination of intestinal samples showed morphologically normal ganglion cells in appropriate number and distribution. This is to our knowledge the first description of an ENDRB gene deletion and associated clinical signs in a mammalian species different from humans and rodents. In humans and rats it is postulated that the variable presence and severity of intestinal aganglionosis and other features in individuals with EDNRB deletion is due to a variable genetic background and multiple gene interactions. Therefore the here analyzed sheep are a valuable animal model to test these hypotheses in another species.
Cytogenetic and Genome Research | 2013
Alfredo Pauciullo; Katharina Fleck; Gesine Lühken; D. Di Berardino; G. Erhardt
Molecular defects occurring in the endothelin receptor type-B (EDNRB) gene are known to be associated with pigmentary anomalies and intestinal aganglionosis in humans, rodents and horses. We carried out a cytogenetic investigation in 2 ewes heterozygous for the deletion of the EDNRB gene and in 2 more females as control. The RBA-banding showed that all 4 ewes were karyologically normal. EDNRB gene-specific probes were produced by PCR and cloning. The application of the R-banding and propidium iodide-staining fluorescent in situ hybridization allowed mapping the gene to OAR 10q22 and confirmed the heterozygous status of the ewes investigated for the EDNRB gene deletion. For the fine estimation of the gene length in sheep and for the correct sizing of the chromosomal gap, a dual-color FISH was applied to high-resolution DNA fibers in combination with digital imaging microscopy. The comparison of the DNA fiber barcodes indicated a chromosomal deletion larger than the EDNRB gene itself. The length of the gene, not known for sheep until now, was estimated to be ∼21 kb, whereas the microchromosomal deletion was ∼100 kb. EDNRB is located in a chromosomal region previously shown to be a fragile site. The applied method allowed locating the potential breakpoints, thus permitting further interesting prospective investigations also in the field of the fragile sites in sheep.
Veterinary Research | 2018
Vahid Molaee; Marwa Eltanany; Gesine Lühken
Maedi-visna, a disease caused by small ruminant lentiviruses (SRLVs), is present in sheep from many countries, also including Germany. An amino acid substitution (E/K) at position 35 of the transmembrane protein 154 (TMEM154) as well as a deletion in the chemokine (C-C motif) receptor type 5 gene (CCR5) were reported to be associated with the serological MV status and/or the SRLV provirus concentration in North American sheep populations. The aim of this study was to test if those two gene variants might be useful markers for MV susceptibility in Germany. For this purpose, more than 500 sheep from 17 serologically MV positive German sheep flocks with different breed backgrounds were genotyped applying PCR-based methods. Both, crosstab and non-parametric analyses showed significant associations of the amino acid substitution at position 35 of TMEM154 with the serological MV status (cut-off-based classification) and the median MV ELISA S/P value in all samples and in two of the four analyzed breed subsets. The deletion in the CCR5 promoter did not show a consistent association with serological MV status or median ELISA S/P value. It can be concluded that the amino acid substitution at position 35 of TMEM154 is a promising marker for breeding towards a lower number of serologically MV positive sheep in German flocks, at least in flocks of the Texel breed, while this remains questionable for the deletion in the CCR5 promoter. The findings of this study still need to be verified in additional sheep breeds.
Journal of Virological Methods | 2004
A Buschmann; A.-G Biacabe; U Ziegler; A Bencsik; J.-Y Madec; G. Erhardt; Gesine Lühken; Thierry Baron; Martin H. Groschup