Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne D. Lewis is active.

Publication


Featured researches published by Anne D. Lewis.


Journal of Immunology | 2006

Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages

Halina Offner; Sandhya Subramanian; Susan M. Parker; Chunhe Wang; Michael Afentoulis; Anne D. Lewis; Arthur A. Vandenbark; Patricia D. Hurn

Induction of stroke not only produces local ischemia and brain damage, but also has profound effects on peripheral immune responses. In the current study, we evaluated effects on spleen and blood cells 4 days after stroke induction. Surprisingly, there was a less inflammatory cytokine profile in the middle cerebral artery occlusion-affected right brain hemisphere at 96 h compared with earlier time points. Moreover, our results demonstrate that stroke leads to splenic atrophy characterized by a reduction in organ size, a drastic loss of splenocyte numbers, and induction of annexin V+ and TUNEL+ cells within the spleen that are in the late stages of apoptosis. The consequence of this process was to reduce T cell proliferation responses and secretion of inflammatory cytokines, resulting in a state of profound immunosuppression. These changes produced a drastic reduction in B cell numbers in spleen and blood, and a novel increase in CD4+FoxP3+ regulatory T cells. Moreover, we detected a striking increase in the percentage of nonapoptotic CD11b+ VLA-4-negative macrophages/monocytes in blood. Immunosuppression in response to brain injury may account for the reduction of inflammatory factors in the stroke-affected brain, but also potentially could curtail protective immune responses in the periphery. These findings provide new evidence to support the contention that damage to the brain caused by cerebral ischemia provides a powerful negative signal to the peripheral immune system that ultimately induces a drastic state of immunosuppression caused by cell death as well as an increased presence of CD4+FoxP3+ regulatory T cells.


Journal of Immunology | 2010

Estradiol and G1 Reduce Infarct Size and Improve Immunosuppression after Experimental Stroke

Bing Zhang; Sandhya Subramanian; Suzan Dziennis; Jia Jia; Masayoshi Uchida; Kozaburo Akiyoshi; Elton Migliati; Anne D. Lewis; Arthur A. Vandenbark; Halina Offner; Patricia D. Hurn

Reduced risk and severity of stroke in adult females is thought to depend on normal endogenous levels of estrogen, a well-known neuroprotectant and immunomodulator. In male mice, experimental stroke induces immunosuppression of the peripheral immune system, characterized by a reduction in spleen size and cell numbers and decreased cytokine and chemokine expression. However, stroke-induced immunosuppression has not been evaluated in female mice. To test the hypothesis that estradiol (E2) deficiency exacerbates immunosuppression after focal stroke in females, we evaluated the effect of middle cerebral artery occlusion on infarct size and peripheral and CNS immune responses in ovariectomized mice with or without sustained, controlled levels of 17-β–E2 administered by s.c. implant or the putative membrane estrogen receptor agonist, G1. Both E2- and G1-replacement decreased infarct volume and partially restored splenocyte numbers. Moreover, E2-replacement increased splenocyte proliferation in response to stimulation with anti-CD3/CD28 Abs and normalized aberrant mRNA expression for cytokines, chemokines, and chemokine receptors and percentage of CD4+CD25+FoxP3+ T regulatory cells observed in E2-deficient animals. These beneficial changes in peripheral immunity after E2 replacement were accompanied by a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased expression of CCR7 in the lesioned brain hemisphere. These results demonstrate for the first time that E2 replacement in ovariectomized female mice improves stroke-induced peripheral immunosuppression.


Nature Medicine | 2016

Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques

Ann J. Hessell; J. Pablo Jaworski; Erin Epson; Kenta Matsuda; Shilpi Pandey; Christoph A. Kahl; Jason S. Reed; William F. Sutton; Katherine B. Hammond; Tracy Cheever; Philip T. Barnette; Alfred W. Legasse; Shannon L. Planer; Jeffrey J. Stanton; Amarendra Pegu; Xuejun Chen; Don C. Siess; David Burke; Byung Park; Michael K. Axthelm; Anne D. Lewis; Vanessa M. Hirsch; Barney S. Graham; John R. Mascola; Jonah B. Sacha; Nancy L. Haigwood

Prevention of mother-to-child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested HIV-1–specific human neutralizing monoclonal antibodies (NmAbs) as a post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with the simian-human immunodeficiency virus SHIVSF162P3. On days 1, 4, 7 and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h after antibody administration. Replicating virus was found in multiple tissues by day 1 in animals that were not treated. All NmAb-treated macaques were free of virus in blood and tissues at 6 months after exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged after CD8+ T cell depletion. These results suggest that early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.


Journal of Virology | 2013

Neutralizing Polyclonal IgG Present during Acute Infection Prevents Rapid Disease Onset in Simian-Human Immunodeficiency Virus SHIVSF162P3-Infected Infant Rhesus Macaques

Juan Pablo Jaworski; James J. Kobie; Zachary Brower; Delphine C. Malherbe; Gary Landucci; William F. Sutton; Biwei Guo; Jason S. Reed; Enrique J. León; Flora Engelmann; Bo Zheng; Al Legasse; Byung Park; Mary F. Dickerson; Anne D. Lewis; Lois M. A. Colgin; Michael K. Axthelm; Ilhem Messaoudi; Jonah B. Sacha; Dennis R. Burton; Donald N. Forthal; Ann J. Hessell; Nancy L. Haigwood

ABSTRACT Simian-human immunodeficiency virus (SHIV) models for human immunodeficiency virus (HIV) infection have been widely used in passive studies with HIV neutralizing antibodies (NAbs) to test for protection against infection. However, because SHIV-infected adult macaques often rapidly control plasma viremia and any resulting pathogenesis is minor, the model has been unsuitable for studying the impact of antibodies on pathogenesis in infected animals. We found that SHIVSF162P3 infection in 1-month-old rhesus macaques not only results in high persistent plasma viremia but also leads to very rapid disease progression within 12 to 16 weeks. In this model, passive transfer of high doses of neutralizing IgG (SHIVIG) prevents infection. Here, we show that at lower doses, SHIVIG reduces both plasma and peripheral blood mononuclear cell (PBMC)-associated viremia and mitigates pathogenesis in infected animals. Moreover, production of endogenous NAbs correlated with lower set-point viremia and 100% survival of infected animals. New SHIV models are needed to investigate whether passively transferred antibodies or antibodies elicited by vaccination that fall short of providing sterilizing immunity impact disease progression or influence immune responses. The 1-month-old rhesus macaque SHIV model of infection provides a new tool to investigate the effects of antibodies on viral replication and clearance, mechanisms of B cell maintenance, and the induction of adaptive immunity in disease progression.


Nature Communications | 2018

Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology

Alec J. Hirsch; Victoria H. J. Roberts; Peta L. Grigsby; Nicole Haese; Matthias C. Schabel; Xiaojie Wang; Jamie O. Lo; Zheng Liu; Christopher D. Kroenke; Jessica L. Smith; Meredith A. Kelleher; Rebecca Broeckel; Craig N. Kreklywich; Christopher J. Parkins; Michael Denton; Patricia P. Smith; Victor R. DeFilippis; William B. Messer; Jay A. Nelson; Jon D. Hennebold; Marjorie R. Grafe; Lois M. A. Colgin; Anne D. Lewis; Rebecca M. Ducore; Tonya Swanson; Alfred W. Legasse; Michael K. Axthelm; Rhonda MacAllister; Ashlee V. Moses; Terry K. Morgan

Zika virus (ZIKV) infection during pregnancy leads to an increased risk of fetal growth restriction and fetal central nervous system malformations, which are outcomes broadly referred to as the Congenital Zika Syndrome (CZS). Here we infect pregnant rhesus macaques and investigate the impact of persistent ZIKV infection on uteroplacental pathology, blood flow, and fetal growth and development. Despite seemingly normal fetal growth and persistent fetal-placenta-maternal infection, advanced non-invasive in vivo imaging studies reveal dramatic effects on placental oxygen reserve accompanied by significantly decreased oxygen permeability of the placental villi. The observation of abnormal oxygen transport within the placenta appears to be a consequence of uterine vasculitis and placental villous damage in ZIKV cases. In addition, we demonstrate a robust maternal-placental-fetal inflammatory response following ZIKV infection. This animal model reveals a potential relationship between ZIKV infection and uteroplacental pathology that appears to affect oxygen delivery to the fetus during development.Zika virus infection during pregnancy can result in birth defects, but underlying pathogenesis at the maternal-fetal interface is unclear. Here, the authors use non-invasive in vivo imaging of Zika-infected rhesus macaques and show that infection results in abnormal oxygen transport across the placenta.


Virology | 2015

A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques

Heather A. Vatter; Eric F. Donaldson; Jeremy P. Huynh; Stephanie Rawlings; Minsha Manoharan; Alfred W. Legasse; Shannon L. Planer; Mary F. Dickerson; Anne D. Lewis; Lois M. A. Colgin; Michael K. Axthelm; Jerilyn Pecotte; Ralph S. Baric; Scott W. Wong; Margo A. Brinton

Abstract Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100–1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages had a high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques.


PLOS Neglected Tropical Diseases | 2017

Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques

Rebecca Broeckel; Julie M. Fox; Nicole Haese; Craig N. Kreklywich; Soila Sukulpovi-Petty; Alfred W. Legasse; Patricia P. Smith; Michael Denton; Carsten Corvey; Shiv Krishnan; Lois M. A. Colgin; Rebecca M. Ducore; Anne D. Lewis; Michael K. Axthelm; Marie Mandron; Pierre Cortez; Jonathan Rothblatt; Ercole Rao; Ingo Focken; Kara Carter; Gopal Sapparapau; James E. Crowe; Michael S. Diamond; Daniel N. Streblow

Chikungunya virus (CHIKV) is a mosquito-borne virus that causes a febrile syndrome in humans associated with acute and chronic debilitating joint and muscle pain. Currently no licensed vaccines or therapeutics are available to prevent or treat CHIKV infections. We recently isolated a panel of potently neutralizing human monoclonal antibodies (mAbs), one (4N12) of which exhibited prophylactic and post-exposure therapeutic activity against CHIKV in immunocompromised mice. Here, we describe the development of an engineered CHIKV mAb, designated SVIR001, that has similar antigen binding and neutralization profiles to its parent, 4N12. Because therapeutic administration of SVIR001 in immunocompetent mice significantly reduced viral load in joint tissues, we evaluated its efficacy in a rhesus macaque model of CHIKV infection. Rhesus macaques that were treated after infection with SVIR001 showed rapid elimination of viremia and less severe joint infiltration and disease compared to animals treated with SVIR002, an isotype control mAb. SVIR001 reduced viral burden at the site of infection and at distant sites and also diminished the numbers of activated innate immune cells and levels of pro-inflammatory cytokines and chemokines. SVIR001 therapy; however, did not substantively reduce the induction of CHIKV-specific B or T cell responses. Collectively, these results show promising therapeutic activity of a human anti-CHIKV mAb in rhesus macaques and provide proof-of-principle for its possible use in humans to treat active CHIKV infections.


Laboratory Animals | 2010

Dietary soy may not confound acute experimental stroke infarct volume outcomes in ovariectomized female rats

Kamm D. Prongay; Anne D. Lewis; Patricia D. Hurn; Stephanie J. Murphy

Oestrogen administration can alter experimental stroke outcomes. Soy as a source of phytoestrogens may therefore modulate responses in ‘oestrogen-sensitive’ stroke models, thus potentially confounding results. We evaluated the effects of dietary soy on acute infarct volumes in a pilot study using a rat focal stroke model. We hypothesized that ovariectomized (OVX) rats fed a soy-rich diet would have smaller acute infarct volumes than rats fed a soy-free diet. OVX rats were randomly assigned to a soy-free (n = 6) or a soy-rich (n = 6) diet for four weeks and weighed weekly. Following the dietary trial, rats underwent 2 h of middle cerebral artery occlusion (MCAO). Mean arterial blood pressure, rectal and temporalis muscle temperatures, arterial blood gases and blood glucose were recorded peri-ischaemia. Rats were euthanized 22 h following 2 h of MCAO. Brains were stained with 2,3,5-triphenyl tetrazolium chloride for acute infarct volume analysis. Uterine weight and histology were also evaluated as additional internal oestrogen-sensitive controls. Rats on the soy-free diet had greater gains in body weight (259 ± 6% baseline body weight) than rats on the soy-rich diet (238 ± 4% baseline body weight). No differences were seen in uterine weight and histology, peri-ischaemic physiological parameters and infarct volumes between the treatment groups. The results of this pilot study suggest that the dietary soy level tested may not alter acute infarct volumes in ischaemic female rat brain. More studies addressing the potential confounding effects of dietary soy in ‘oestrogen-sensitive’ stroke models are needed if investigators are to make informed choices regarding diets used in experimental stroke research.


Journal of Medical Primatology | 2008

Evaluation of the use of coconut to treat chronic diarrhea in rhesus macaques (Macaca mulatta).

Jennifer Wilk; Gwen M. Maginnis; Kris Coleman; Anne D. Lewis; B. Ogden

Background  Chronic diarrhea can be challenging to manage in captive rhesus macaques (Macaca mulatta) leading to ongoing diagnostics, medications, monitoring, and potential euthanasia. Coconut has been used as a dietary supplement for people with inflammatory bowel disease, with anecdotal reports of decreased diarrhea following the dietary addition. A dietary trial in rhesus macaques was initiated to evaluate the hypothesis that dietary coconut decreases symptoms of chronic diarrhea in rhesus macaques.


Journal of Medical Primatology | 2016

Specific pathogen free macaque colonies: A review of principles and recent advances for viral testing and colony management

Joann L. Yee; Thomas H. Vanderford; Elizabeth S. Didier; Stanton Gray; Anne D. Lewis; Jeffrey A. Roberts; Kerry Taylor; Rudolf P. Bohm

Specific pathogen free (SPF) macaques provide valuable animal models for biomedical research. In 1989, the National Center for Research Resources [now Office of Research Infrastructure Programs (ORIP)] of the National Institutes of Health initiated experimental research contracts to establish and maintain SPF colonies. The derivation and maintenance of SPF macaque colonies is a complex undertaking requiring knowledge of the biology of the agents for exclusion and normal physiology and behavior of macaques, application of the latest diagnostic technology, facilitiy management, and animal husbandry. This review provides information on the biology of the four viral agents targeted for exclusion in ORIP SPF macaque colonies, describes current state‐of‐the‐art viral diagnostic algorithms, presents data from proficiency testing of diagnostic assays between laboratories at institutions participating in the ORIP SPF program, and outlines management strategies for maintaining the integrity of SPF colonies using results of diagnostic testing as a guide to decision making.

Collaboration


Dive into the Anne D. Lewis's collaboration.

Top Co-Authors

Avatar

Lois M. A. Colgin

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca M. Ducore

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Alfred W. Legasse

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betsy Ferguson

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge