Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne E. Giblin is active.

Publication


Featured researches published by Anne E. Giblin.


Biogeochemistry | 1996

The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean

Scott W. Nixon; J. W. Ammerman; Larry P. Atkinson; V. M. Berounsky; Gilles Billen; William C. Boicourt; Walter R. Boynton; Thomas M. Church; D. M. Ditoro; Ragnar Elmgren; J. H. Garber; Anne E. Giblin; R. A. Jahnke; N.J.P. Owens; M. E. Q. Pilson; Sybil P. Seitzinger

Five large rivers that discharge on the western North Atlantic continental shelf carry about 45% of the nitrogen (N) and 70% of the phosphorus (P) that others estimate to be the total flux of these elements from the entire North Atlantic watershed, including North, Central and South America, Europe, and Northwest Africa. We estimate that 61 · 109 moles y−1 of N and 20 · 109 moles y−1 of P from the large rivers are buried with sediments in their deltas, and that an equal amount of N and P from the large rivers is lost to the shelf through burial of river sediments that are deposited directly on the continental slope. The effective transport of active N and P from land to the shelf through the very large rivers is thus reduced to 292 · 109 moles y−1 of N and 13 · 109 moles y−1 of P.The remaining riverine fluxes from land must pass through estuaries. An analysis of annual total N and total P budgets for various estuaries around the North Atlantic revealed that the net fractional transport of these nutrients through estuaries to the continental shelf is inversely correlated with the log mean residence time of water in the system. This is consistent with numerous observations of nutrient retention and loss in temperate lakes. Denitrification is the major process responsible for removing N in most estuaries, and the fraction of total N input that is denitrified appears to be directly proportional to the log mean water residence time. In general, we estimate that estuarine processes retain and remove 30–65% of the total N and 10–55% of the total P that would otherwise pass into the coastal ocean. The resulting transport through estuaries to the shelf amounts to 172–335 · 109 moles y−1 of N and 11–19 · 109 moles y−1 of P. These values are similar to the effective contribution from the large rivers that discharge directly on the shelf.For the North Atlantic shelf as a whole, N fluxes from major rivers and estuaries exceed atmospheric deposition by a factor of 3.5–4.7, but this varies widely among regions of the shelf. For example, on the U.S. Atlantic shelf and on the northwest European shelf, atmospheric deposition of N may exceed estuarine exports. Denitrification in shelf sediments exceeds the combined N input from land and atmosphere by a factor of 1.4–2.2. This deficit must be met by a flux of N from the deeper ocean. Burial of organic matter fixed on the shelf removes only a small fraction of the total N and P input (2–12% of N from land and atmosphere; 1–17% of P), but it may be a significant loss for P in the North Sea and some other regions. The removal of N and P in fisheries landings is very small. The gross exchange of N and P between the shelf and the open ocean is much larger than inputs from land and, for the North Atlantic shelf as a whole, it may be much larger than the N and P removed through denitrification, burial, and fisheries. Overall, the North Atlantic continental shelf appears to remove some 700–950· 109 moles of N each year from the deep ocean and to transport somewhere between 18 and 30 · 109 moles of P to the open sea. If the N and P associated with riverine sediments deposited on the continental slope are included in the total balance, the net flux of N to the shelf is reduced by 60 · 109 moles y−1 and the P flux to the ocean is increased by 20 · 109 moles y−1. These conclusions are quite tentative, however, because of large uncertainties in our estimates of some important terms in the shelf mass balance.


Ecological Applications | 2006

METHODS FOR MEASURING DENITRIFICATION: DIVERSE APPROACHES TO A DIFFICULT PROBLEM

Peter M. Groffman; Mark A. Altabet; John Karl Böhlke; Klaus Butterbach-Bahl; Mark B. David; Mary K. Firestone; Anne E. Giblin; Todd M. Kana; Lars Peter Nielsen; Mary A. Voytek

Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.


Ecology | 1991

EFFECTS OF TEMPERATURE AND SUBSTRATE QUALITY ON ELEMENT MINERALIZATION IN SIX ARCTIC SOILS

Knute J. Nadelhoffer; Anne E. Giblin; Gaius R. Shaver; J. A. Laundre

We compared the effects of temperature on rates of microbial respiration, N mineralization, nitrification, and P mineralization in soils from six arctic ecosystems located along a toposequence on Alaskas North Slope. Soils from these ecosystems were incubated aerobically in the laboratory for 13 wk and at temperatures representative of field values during a typical growing season. Rates of C and N mineralization were insen- sitive to temperature between 30 and 90C but increased by factors of 2 or more between 90 and 15?. For both C and N, differences in mineralization rates among soils were greater than differences due to incubation temperature within single soils. This suggests that the quality of soil organic matter varies widely among these ecosystems and is more important than soil temperature differences in controlling rates of these processes in the field. Nitri- fication occurred in all soils, even at 30, but there were large differences among soils in nitrification potentials. Overall differences in P mineralization between soils were small. Rates of P mineralization, however, decreased with increasing temperature in soils from some sites and increased with temperature in others. Carbon respired during the 1 3-wk incubations ranged between 1.5 and 8% of total soil organic C across soil types and incubation temperatures. In contrast to the relatively high C mineralization rates in these soils, net N and P mineralization rates were very low and were likely due to high microbial demands for these nutrients. High microbial demand for mineral nutrients can severely limit plant N and P availability in arctic soils.


BioScience | 1992

Global Change and the Carbon Balance of Arctic EcosystemsCarbon/nutrient interactions should act as major constraints on changes in global terrestrial carbon cycling

Gaius R. Shaver; W. D. Billings; F. Stuart Chapin; Anne E. Giblin; Knute J. Nadelhoffer; Walter C. Oechel; Edward B. Rastetter

n the cold, arctic climate, global warming due to greenhouse gas accumulation in the atmosphere might be expected to increase both primary production and heterotrophic (mainly soil) respiration. Which of these processes will increase more or more rapidly? The answer to this question is critical in understanding the effects of warming on the net carbon balance of arctic ecosystems and of the earth itself. If primary production increases faster than heterotrophic respiration, carbon will be removed from the atmosphere and will accumulate on land. If the reverse happens, carbon will be lost to the atmosphere. Eventually, a new equilibrium may be reached, but this equilibration could take decades or even centuries. Meanwhile, dramatic losses or gains of carbon may occur over the entire arctic region (5.7 x 106 km2; Oechel 1989), with potentially important feedbacks on the global atmospheric concentration of


Ecological Monographs | 1991

Biogeochemical Diversity Along a Riverside Toposequence in Arctic Alaska

Anne E. Giblin; Knute J. Nadelhoffer; Gaius R. Shaver; J. A. Laundre; A. J. McKerrow

Nitrogen and phosphorus pool sizes, distribution, and cycling rates were described and compared for six different ecosystem types occurring along a single topose- quence in northern Alaska. The toposequence was located on a series of old floodplains of the Sagavanirktok River, in the northern foothills of the Brooks Range. From tussock tundra in the uplands, the toposequence passed through a relatively dry hilltop heath zone, a hillslope shrub/lupine/Cassiope zone, a footslope Equisetum zone, a wet sedge tundra, and a riparian shrub zone. A late-melting snowbank covered the hillslope site in early June of each year, and the sites consistently varied in soil temperature, soil moisture, thaw depth, and the seasonal pattern of soil thaw. The standing stocks of N, P, and C in soils of these six ecosystem types varied dra- matically but not monotonically along the toposequence, as did the turnover rates of these elements. Several measures were used in comparisons of N and P availability, including soil solution concentrations, in situ accumulation on ion-exchange resins, and levels of KCl-extractable N and P. Annual rates of net N mineralization were assayed using a buried bag method, and ecosystem respiration was measured by trapping CO2 in soda lime (NaOH + Ca (OH)2). Soil P pools were characterized by sequential extraction methods into four major pools, including loosely bound P, Al- and Fe-bound P, primary mineral P, and organic P. Both N and P availability were low in all six ecosystems when compared with temperate forests or wetlands. Among ecosystems, however, there was considerable variation in the relative availability of N vs. P, and in the apparent relative importance of nitrate as a nitrogen source.


Biogeochemistry | 1996

Estimating denitrification in North Atlantic continental shelf sediments

Sybil P. Seitzinger; Anne E. Giblin

A model of coupled nitrification/denitrification was developed for continental shelf sediments to estimate the spatial distribution of denitrification throughout shelf regions in the North Atlantic basin. Using data from a wide range of continental shelf regions, we found a linear relationship between denitrification and sediment oxygen uptake. This relationship was applied to specific continental shelf regions by combining it with a second regression relating sediment oxygen uptake to primary production in the overlying water. The combined equation was: denitrification (mmol N m−2 d−1)=0.019* phytoplankton production (mmol C m−2 d−1). This relationship suggests that approximately 13% of the N incorporated into phytoplankton in shelf waters is eventually denitrified in the sediments via coupled nitrification/denitrification, assuming a C:N ratio of 6.625:1 for phytoplankton. The model calculated denitrification rates compare favorably with rates reported for several shelf regions in the North Atlantic.The model-predicted average denitrification rate for continental shelf sediments in the North Atlantic Basin is 0.69 mmol N m− 2 d−1. Denitrification rates (per unit area) predicted by the model are highest for the continental shelf region in the western North Atlantic between Cape Hatteras and South Florida and lowest for Hudson Bay, the Baffin Island region, and Greenland. Within latitudinal belts, average denitrification rates were lowest in the high latitudes, intermediate in the tropics and highest in the mid-latitudes. Although denitrification rates per unit area are lowest in the high latitudes, the total N removal by denitrification (53 × 1010 mol N y−1) is similar to that in the mid-latitudes (60 × 1010 mol N y−1) due to the large area of continental shelf in the high latitudes. The Gulf of St. Lawrence/Grand Banks area and the North Sea are responsible for seventy-five percent of the denitrification in the high latitude region. N removal by denitrification in the western North Atlantic (96 × 1010 mol N y−1) is two times greater than in the eastern North Atlantic (47 × 1010 mol N y−1). This is primarily due to differences in the area of continental shelf in the two regions, as the average denitrification rate per unit area is similar in the western and eastern North Atlantic.We calculate that a total of 143 × 1010 mol N y−1 is removed via coupled nitrification/denitrification on the North Atlantic continental shelf. This estimate is expected to underestimate total sediment denitrification because it does not include direct denitrification of nitrate from the overlying water. The rate of coupled nitrification/denitrification calculated is greater than the nitrogen inputs from atmospheric deposition and river sources combined, and suggests that onwelling of nutrient rich slope water is a major source of N for denitrification in shelf regions. For the two regions where N inputs to a shelf region from onwelling have been measured, onwelling appears to be able to balance the denitrification loss.


Ecological Monographs | 1998

BIOMASS AND CO2 FLUX IN WET SEDGE TUNDRAS: RESPONSES TO NUTRIENTS, TEMPERATURE, AND LIGHT

Gaius R. Shaver; Loretta C. Johnson; D. H. Cades; G. Murray; J. A. Laundre; Edward B. Rastetter; Knute J. Nadelhoffer; Anne E. Giblin

The aim of this research was to analyze the effects of increased N or P availability, increased air temperature, and decreased light intensity on wet sedge tundra in northern Alaska. Nutrient availability was increased for 6–9 growing seasons, using N and P fertilizers in factorial experiments at three separate field sites. Air temperature was increased for six growing seasons, using plastic greenhouses at two sites, both with and without N + P fertilizer. Light intensity (photosynthetically active photon flux) was reduced by 50% for six growing seasons at the same two sites, using optically neutral shade cloth. Responses of wet sedge tundra to these treatments were documented as changes in vegetation biomass, N mass, and P mass, changes in whole-system CO2 fluxes, and changes in species composition and leaf-level photosynthesis. Biomass, N mass, and P mass accumulation were all strongly P limited, and biomass and N mass accumulation also responded significantly to N addition with a small N × P interaction. Greenhouse warming alone had no significant effect on biomass, N mass, or P mass, although there was a consistent trend toward increased mass in the greenhouse treatments. There was a significant negative interaction between the greenhouse treatment and the N + P fertilizer treatment, i.e., the effect of the two treatments combined was to reduce biomass and N mass significantly below that of the fertilizer treatment only. Six years of shading had no significant effect on biomass, N mass, or P mass. Ecosystem CO2 fluxes included net ecosystem production (NEP; net CO2 flux), ecosystem respiration (RE, including both plant and soil respiration), and gross ecosystem production (GEP; gross ecosystem photosynthesis). All three fluxes responded to the fertilizer treatments in a pattern similar to the responses of biomass, N mass, and P mass, i.e., with a strong P response and a small, but significant, N response and N × P interaction. The greenhouse treatment also increased all three fluxes, but the greenhouse plus N + P treatment caused a significant decrease in NEP because RE increased more than GEP in this treatment. The shade treatment increased both GEP and RE, but had no effect on NEP. Most of the changes in CO2 fluxes per unit area of ground were due to changes in plant biomass, although there were additional, smaller treatment effects on CO2 fluxes per unit biomass, per unit N mass, and per unit P mass. The vegetation was composed mainly of rhizomatous sedges and rushes, but changes in species composition may have contributed to the changes in vegetation nutrient content and ecosystem-level CO2 fluxes. Carex cordorrhiza, the species with the highest nutrient concentrations in its tissues in control plots, was also the species with the greatest increase in abundance in the fertilized plots. In comparison with Eriophorum angustifolium, another species that was abundant in control plots, C. cordorrhiza had higher photosynthetic rates per unit leaf mass. Leaf photosynthesis and respiration of C. cordorrhiza also increased with fertilizer treatment, whereas they decreased or remained constant in E. angustifolium. The responses of these wet sedge tundras were similar to those of a nearby moist tussock tundra site that received an identical series of experiments. The main difference was the dominant P limitation in wet sedge tundra vs. N limitation in moist tussock tundra. Both tundras were relatively unresponsive to the increased air temperatures in the greenhouses but showed a strong negative interaction between the greenhouse and fertilizer treatments. New data from this study suggest that the negative interaction may be driven by a large increase in respiration in warmed fertilized plots, perhaps in relation to large increases in P concentration.


Oecologia | 1996

15N natural abundances and N use by tundra plants

Knute J. Nadelhoffer; Gaius R. Shaver; Brian Fry; Anne E. Giblin; Loretta C. Johnson; Robert B. McKane

Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar δ15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock tundra at several other sites and across five other tundra types at a single site. Ericaceous species had the lowest δ15N values, ranging between about −8 to −6‰. Foliar 15N contents increased progressively in birch, willows and sedges to maximum δ15N values of about +2‰ in sedges. Soil 15N contents in tundra ecosystems at our two most intensively studied sites increased with depth and δ15N values were usually higher for soils than for plants. Isotopic fractionations during soil N transformations and possibly during plant N uptake could lead to observed differences in 15N contents among plant species and between plants and soils. Patterns of variation in 15N content among species indicate that tundra plants acquire nitrogen in extremely nutrient-poor environments by competitive partitioning of the overall N pool. Differences in plant N sources, rooting depth, mycorrhizal associations, forms of N taken up, and other factors controlling plant N uptake are possible causes of variations in δ15N values of tundra plant species.


Ecology | 1997

CLIMATIC EFFECTS ON TUNDRA CARBON STORAGE INFERRED FROM EXPERIMENTAL DATA AND A MODEL

Robert B. McKane; Edward B. Rastetter; Gaius R. Shaver; Knute J. Nadelhoffer; Anne E. Giblin; James A. Laundre; F. Stuart Chapin

We used a process-based model of ecosystem carbon (C) and nitrogen (N) dynamics, MBL-GEM (Marine Biological Laboratory General Ecosystem Model), to integrate and analyze the results of several experiments that examined the response of arctic tussock tundra to manipulations of CO2, temperature, light, and soil nutrients. The experiments manipulated these variables over 3- to 9-yr periods and were intended to simulate anticipated changes in the arctic environment. Our objective was to use the model to extend the analysis of the experimental data so that unmeasured changes in ecosystem C storage and the underlying mechanisms controlling those changes could be estimated and compared. Using an inverse calibration method, we derived a single parameter set for the model that closely simulated the measured responses of tussock tundra to all of the experimental treatments. This parameterization allowed us to infer confidence limits for ecosystem components and processes that were not directly measured in the experiments. Thus, we used the model to estimate changes in ecosystem C storage by inferring key soil processes within the constraints imposed by measured components of the ecosystem C budget. Because tussock tundra is strongly N limited, we hypothesized that changes in ecosystem C storage in response to the experimental treatments would be constrained by several key aspects of C–N interactions: (1) changes in the amount of N in the ecosystem, (2) changes in the C:N ratios of vegetation and soil, and (3) redistribution of N between soil (with a low C:N ratio) and vegetation (with a high C:N ratio). The model results reveal widely differing patterns of change in C–N interactions and constraints on change in ecosystem C storage among treatments. For example, after 9 yr the elevated CO2 (2 × ambient) treatment and the N fertilized (10 g N·m−2·yr−1) treatment increased ecosystem C stocks by 1.4 and 2.9%, respectively. Whereas the increase in the CO2 treatment was due solely to an increase in the C:N ratios of vegetation and soil, the increase in the fertilized treatment was due to increased ecosystem N content and a shift of N from soil to vegetation. In contrast, the greenhouse (3.5°C above ambient) and shade (one-half ambient light) treatments decreased ecosystem C stocks by 1.9 and 2.7%, respectively. The primary reason for the net C losses in these treatments was an increase in respiration relative to photosynthesis, with a consequent decrease in the ecosystem C:N ratio. However, when we simulated the elevated temperatures in the greenhouse treatment without the confounding effects of decreased light intensity (an artifact of the greenhouse structures), there was a long-term increase in ecosystem C stocks because of increased photosynthetic response to the temperature-induced shift of N from soil to vegetation. If our simulated changes in ecosystem C storage are extrapolated for the ≈43 Pg C contained in arctic tundras globally, the maximum net gain or loss (≈0.3% per yr) from tundra would be equivalent to 0.13 Pg C/yr. Although fluxes of this magnitude would have a relatively minor impact on current changes in atmospheric CO2, the long-term impact on tundra C stores could be significant. The synthesis and insights provided by the model should make it possible to extrapolate into the future with a better understanding of the processes governing long-term changes in tundra C storage.


Marine Environmental Research | 1999

Using stable isotopes to trace sewage-derived material through Boston Harbor and Massachusetts Bay

Jane Tucker; N. Sheats; Anne E. Giblin; Charles S. Hopkinson; J.P. Montoya

Using stable isotopes, we assessed the effects of long-term sewage inputs within Boston Harbor and extending into adjacent Massachusetts Bay. We used nitrogen and sulfur stable isotopes (δ15N and δ34S) to distinguish between sources of these elements to sediments, particulate organic matter, algae, and animals. The isotope data revealed the widespread presence of sewage-derived particulate and dissolved materials. Incorporation of sewage-derived effluent particulates into sediments of the harbor and into Massachusetts Bay was apparent in the δ15N values of surface sediments and in sediment profiles. Changes towards more typical marine values over time indicated a lessening of sewage inputs. The incorporation of sewage particulates into blue mussels as revealed by the combination of δ15N and δ34S values in their tissues was also evident and suggested the importance of sewage-derived nutrients to the local food web.

Collaboration


Dive into the Anne E. Giblin's collaboration.

Top Co-Authors

Avatar

Gaius R. Shaver

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Tucker

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward B. Rastetter

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Valiela

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Laundre

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Laundre

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge