Anne Gegonne
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Gegonne.
Nature Genetics | 1999
Paul A. Wade; Anne Gegonne; Peter L. Jones; Esteban Ballestar; Florence Aubry; Alan P. Wolffe
Methylation of DNA at the dinucleotide CpG is essential for mammalian development and is correlated with stable transcriptional silencing. This transcriptional silencing has recently been linked at a molecular level to histone deacetylation through the demonstration of a physical association between histone deacetylases and the methyl CpG-binding protein MeCP2 (refs 4,5). We previously purified a histone deacetylase complex from Xenopus laevis egg extracts that consists of six subunits, including an Rpd3-like deacetylase, the RbA p48/p46 histone-binding protein and the nucleosome-stimulated ATPase Mi-2 (ref. 6). Similar species were subsequently isolated from human cell lines, implying functional conservation across evolution. This complex represents the most abundant form of deacetylase in amphibian eggs and cultured mammalian cells. Here we identify the remaining three subunits of this enzyme complex. One of them binds specifically to methylated DNA in vitro and molecular cloning reveals a similarity to a known methyl CpG-binding protein. Our data substantiate the mechanistic link between DNA methylation, histone deacetylation and transcriptional silencing.
Nature Structural & Molecular Biology | 2016
Ballachanda N. Devaiah; Chanelle Case-Borden; Anne Gegonne; Chih Hao Hsu; Qing-Rong Chen; Daoud Meerzaman; Anup Dey; Keiko Ozato; Dinah S. Singer
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Although chromatin decompaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanisms involved are unknown. We report that BRD4 is a histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from those of other HATs. Both mouse and human BRD4 have intrinsic HAT activity. Importantly, BRD4 acetylates H3 K122, a residue critical for nucleosome stability, thus resulting in nucleosome eviction and chromatin decompaction. Nucleosome clearance by BRD4 occurs genome wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. These findings suggest a model wherein BRD4 actively links chromatin structure and transcription: it mediates chromatin decompaction by acetylating and evicting nucleosomes at target genes, thereby activating transcription.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Anne Gegonne; Jocelyn D. Weissman; Dinah S. Singer
The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. One of the TAFs, TAFII250, has acetyltransferase (AT) activity that is necessary for transcription of MHC class I genes: inhibition of the AT activity represses transcription. To identify potential cellular factors that might regulate the AT activity of TAFII250, a yeast two-hybrid library was screened with a TAFII250 segment (amino acids 848-1279) that spanned part of its AT domain and its the domain that binds to the protein, RAP74. The TFIID component, TAFII55, was isolated and found to interact predominantly with the RAP74-binding domain. TAFII55 binding to TAFII250 inhibits its AT activity. Importantly, the addition of recombinant TAFII55 to in vitro transcription assays inhibits TAFII250-dependent MHC class I transcription. Thus, TAFII55 is capable of regulating TAFII250 function by modulating its AT activity.
Molecular and Cellular Biology | 2003
T. Kevin Howcroft; Aparna Raval; Jocelyn D. Weissman; Anne Gegonne; Dinah S. Singer
ABSTRACT Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: “upstream” (−14 and −18) and “downstream” (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAFII250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAFII250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAFII250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAFII250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Anne Gegonne; Jocelyn D. Weissman; Hanxin Lu; Meisheng Zhou; Arindam Dasgupta; Robert Ribble; John N. Brady; Dinah S. Singer
Transcription consists of a series of highly regulated steps: assembly of the preinitiation complex (PIC) at the promoter, initiation, elongation, and termination. PIC assembly is nucleated by TFIID, a complex composed of the TATA-binding protein (TBP) and a series of TBP-associated factors (TAFs). One component, TAF7, is incorporated in the PIC through its interaction with TFIID but is released from TFIID upon transcription initiation. We now report that TAF7 interacts with the transcription factors, TFIIH and P-TEFb, resulting in the inhibition of their Pol II CTD kinase activities. Importantly, in in vitro transcription reactions, TAF7 inhibits steps after PIC assembly and formation of the first phosphodiester bonds. Further, in vivo TAF7 coelongates with P-TEFb and Pol II downstream of the promoter. We propose a model in which TAF7 contributes to the regulation of the transition from PIC assembly to initiation and elongation.
Molecular and Cellular Biology | 2012
Anne Gegonne; Xuguang Tai; Jinghui Zhang; Gang Wu; Jianjian Zhu; Aki Yoshimoto; Jeffrey Hanson; Constance Cultraro; Qing Rong Chen; Terry I. Guinter; Zhihui Yang; Karen S. Hathcock; Alfred Singer; Jaime Rodriguez-Canales; Lino Tessarollo; Susan Mackem; Daoud Meerzaman; Kenneth H. Buetow; Dinah S. Singer
ABSTRACT TAF7, a component of the TFIID complex that nucleates the assembly of transcription preinitiation complexes, also independently interacts with and regulates the enzymatic activities of other transcription factors, including P-TEFb, TFIIH, and CIITA, ensuring an orderly progression in transcription initiation. Since not all TAFs are required in terminally differentiated cells, we examined the essentiality of TAF7 in cells at different developmental stages in vivo. Germ line disruption of the TAF7 gene is embryonic lethal between 3.5 and 5.5 days postcoitus. Mouse embryonic fibroblasts with TAF7 deleted cease transcription globally and stop proliferating. In contrast, whereas TAF7 is essential for the differentiation and proliferation of immature thymocytes, it is not required for subsequent, proliferation-independent differentiation of lineage committed thymocytes or for their egress into the periphery. TAF7 deletion in peripheral CD4 T cells affects only a small number of transcripts. However, T cells with TAF7 deleted are not able to undergo activation and expansion in response to antigenic stimuli. These findings suggest that TAF7 is essential for proliferation but not for proliferation-independent differentiation.
Journal of Immunology | 2005
T. Kevin Howcroft; Jocelyn D. Weissman; Anne Gegonne; Dinah S. Singer
MHC class I expression is subject to both tissue-specific and hormonal regulatory mechanisms. Consequently, levels of expression vary widely among tissues, with the highest levels of class I occurring in the lymphoid compartment, in T cells and B cells. Although the high class I expression in B cells is known to involve the B cell enhanceosome, the molecular basis for high constitutive class I expression in T cells has not been explored. T cell-specific genes, such as TCR genes, are regulated by a T cell enhanceosome consisting of RUNX1, CBFβ, LEF1, and Aly. In this report, we demonstrate that MHC class I gene expression is enhanced by the T cell enhanceosome and results from a direct interaction of the RUNX1-containing complex with the class I gene in vivo. T cell enhanceosome activation of class I transcription is synergistic with CIITA-mediated activation and targets response elements distinct from those targeted by CIITA. These findings provide a molecular basis for the high levels of MHC class I in T cells.
Journal of Biological Chemistry | 2010
Ballachanda N. Devaiah; Hanxin Lu; Anne Gegonne; Zeynep Sercan; Hongen Zhang; Robert J. Clifford; Maxwell P. Lee; Dinah S. Singer
The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TAF7 in regulating TAF1-independent transcription has not been defined. The IFNγ-induced transcriptional co-activator CIITA activates MHC class I and II genes, which are vital for immune responses, in a TAF1-independent manner. Activation by CIITA depends on its intrinsic AT activity. We now show that TAF7 binds to CIITA and inhibits its AT activity, thereby repressing activated transcription. Consistent with this TAF7 function, siRNA-mediated depletion of TAF7 resulted in increased CIITA-dependent transcription. A more global role for TAF7 as a regulator of transcription was revealed by expression profiling analysis: expression of 30–40% of genes affected by TAF7 depletion was independent of either TAF1 or CIITA. Surprisingly, although TAF1-dependent transcripts were largely down-regulated by TAF7 depletion, TAF1-independent transcripts were predominantly up-regulated. We conclude that TAF7, until now considered only a TFIID component and regulator of TAF1-dependent transcription, also regulates TAF1-independent transcription.
Molecular and Cellular Biology | 2008
Aparna Kotekar; Jocelyn D. Weissman; Anne Gegonne; Helit Cohen; Dinah S. Singer
ABSTRACT To examine the role of chromatin in transcriptional regulation of the major histocompatibility complex (MHC) class I gene, we determined nucleosome occupancy and positioning, histone modifications, and H2A.Z occupancy across its regulatory region in murine tissues that have widely different expression levels. Surprisingly, nucleosome occupancy and positioning were indistinguishable between the spleen, kidney, and brain. In all three tissues, the 200 bp upstream of the transcription start site had low nucleosome occupancy. In contrast, nuclease hypersensitivity, histone modifications, and H2A.Z occupancy showed tissue-specific differences. Thus, tissue-specific differences in MHC class I transcription correlate with histone modifications and not nucleosomal organization. Further, activation of class I transcription by gamma interferon or its inhibition by α-amanitin did not alter nucleosome occupancy, positioning, nuclease hypersensitivity, histone modifications, or H2A.Z occupancy in any of the tissues examined. Thus, chromatin remodeling was not required to dynamically modulate transcriptional levels. These findings suggest that the MHC class I promoter remains poised and accessible to rapidly respond to infection and environmental cues.
Journal of Leukocyte Biology | 2016
Ballachanda N. Devaiah; Anne Gegonne; Dinah S. Singer
Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that plays a pivotal role in cancer and inflammatory diseases. BRD4 binds and stays associated with chromatin during mitosis, bookmarking early G1 genes and reactivating transcription after mitotic silencing. BRD4 plays an important role in transcription, both as a passive scaffold via its recruitment of vital transcription factors and as an active kinase that phosphorylates RNA polymerase II, directly and indirectly regulating transcription. Through its HAT activity, BRD4 contributes to the maintenance of chromatin structure and nucleosome clearance. This review summarizes the known functions of BRD4 and proposes a model in which BRD4 actively coordinates chromatin structure and transcription.