Daoud Meerzaman
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daoud Meerzaman.
Clinical Cancer Research | 2004
Junya Fukuoka; Takeshi Fujii; Joanna H. Shih; Tatiana Dracheva; Daoud Meerzaman; Audrey Player; Kyeong Man Hong; Sharon Settnek; Ajay Gupta; Kenneth H. Buetow; Stephen M. Hewitt; William D. Travis; Jin Jen
We immunohistochemically examined 12 core proteins involved in the chromatin remodeling machinery using a tissue microarray composed of 150 lung adenocarcinoma (AD) and 150 squamous cell carcinoma (SCC) cases. Most of the proteins showed nuclear staining, whereas some also showed cytoplasmic or membranous staining. When the expression patterns of all tested antigens were considered, proteins with nuclear staining clustered into two major groups. Nuclear signals of BRM, Ini-1, retinoblastoma, mSin3A, HDAC1, and HAT1 clustered together, whereas nuclear signals of BRG1, BAF155, HDAC2, BAF170, and RbAP48 formed a second cluster. Additionally, two thirds of the cases on the lung tissue array had follow-up information, and survival analysis was performed for each of the tested proteins. Positive nuclear BRM (N-BRM) staining correlated with a favorable prognosis in SCC and AD patients with a 5 year-survival of 53.5% compared with 32.3% for those whose tumors were negative for N-BRM (P = 0.015). Furthermore, patients whose tumors stained positive for both N-BRM and nuclear BRG1 had a 5 year-survival of 72% compared with 33.6% (P = 0.013) for those whose tumors were positive for either or negative for both markers. In contrast, membranous BRM (M-BRM) staining correlated with a poorer prognosis in AD patients with a 5 year-survival of 16.7% compared with those without M-BRM staining (38.1%; P = 0.016). These results support the notion that BRM and BRG1 participate in two distinct chromosome remodeling complexes that are functionally complementary and that the nuclear presence of BRM, its coexpression with nuclear BRG1, and the altered cellular localization of BRM (M-BRM) are useful markers for non-small cell lung cancer prognosis.
Clinical Cancer Research | 2005
Sei Hoon Yang; Leah E. Mechanic; Ping Yang; Maria Teresa Landi; Elise D. Bowman; Jason A. Wampfler; Daoud Meerzaman; Kyeong Man Hong; Felicia Mann; Tatiana Dracheva; Junya Fukuoka; William D. Travis; Neil E. Caporaso; Curtis C. Harris; Jin Jen
We evaluated somatic genetic alterations in the kinase domain of the EGFR gene in the tumors of 219 non–small cell lung cancer patients of primarily Caucasian and African American origins. We identified 26 patients (12%) whose tumors had a mutation in the EGFR gene, and 11 (5%) patients carried novel genomic variations consistent with germ-line polymorphisms. All but one mutation were identified in Caucasian patients affected with adenocarcinoma. EGFR mutations were more frequent in women and in nonsmokers, but a significant portion of the affected patients were men (12 of 26) and current or past smokers accounted for half of the patients affected (13 of 26). Screening subjects with EGFR mutations may identify patients whose tumors could respond to targeted therapy using tyrosine kinase inhibitors.
Oncogene | 2002
Otávia L. Caballero; Vicente Resto; Meera Patturajan; Daoud Meerzaman; Zhou Guo Ming; James Engles; Robert Yochem; Edward Ratovitski; David Sidransky; Jin Jen
PGP9.5 (UCH-L1) is a member of the ubiquitin C-terminal hydrolase (UCH) family of proteins that is expressed in neuronal tissues. Our previous studies have shown that PGP9.5 was highly expressed in primary lung cancers and lung cancer cell lines. Additionally, the frequency of PGP9.5 over expression increases with tumor stage, indicating that PGP9.5 may play a role in lung cancer tumorigenesis. We used the yeast two-hybrid system to identify proteins that interact with PGP9.5. We show that PGP9.5 interacts with at least three proteins, one of which is JAB1, a Jun activation domain binding protein that can bind to p27Kip1 and is involved in the cytoplasmic transportation of p27Kip1 for its degradation. We also show that PGP9.5 is associated with JAB1 in vitro and in vivo; and that both proteins can be a part of a heteromeric complex containing p27Kip1 in the nucleus in lung cancer cells. Furthermore, under serum-restimulation, nuclear translocation of both PGP9.5 and JAB1 coincides with a reduced level of p27Kip1 in the nucleus. In contrast, when cells are contact inhibited, both PGP9.5 and JAB1 became more perinuclear and cytoplasmic in localization while p27Kip1 was present only in the nucleus. Therefore, PGP9.5 may contribute to p27Kip1 degradation via its interaction and nuclear translocation with JAB1.
PLOS ONE | 2010
Mitsutaka Kadota; Howard H. Yang; Bianca Gomez; Misako Sato; Robert J. Clifford; Daoud Meerzaman; Barbara Dunn; Lalage M. Wakefield; Maxwell P. Lee
To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors.
Hepatology | 2010
Robert J. Clifford; Jinghui Zhang; Daoud Meerzaman; Myung Soo Lyu; Ying Hu; Constance Cultraro; Richard Finney; Jenny M. Kelley; Sol Efroni; Sharon Greenblum; Cu V. Nguyen; William Rowe; Sweta Sharma; Gang Wu; Chunhua Yan; Hongen Zhang; Young Hwa Chung; Jeong A. Kim; Neung Hwa Park; Il Han Song; Kenneth H. Buetow
Primary liver cancer is the third most common cause of cancer‐related death worldwide, with a rising incidence in Western countries. Little is known about the genetic etiology of this disease. To identify genetic factors associated with hepatocellular carcinoma (HCC) and liver cirrhosis (LC), we conducted a comprehensive, genome‐wide variation analysis in a population of unrelated Asian individuals. Copy number variation (CNV) and single nucleotide polymorphisms (SNPs) were assayed in peripheral blood with the high‐density Affymetrix SNP6.0 microarray platform. We used a two‐stage discovery and replication design to control for overfitting and to validate observed results. We identified a strong association with CNV at the T‐cell receptor gamma and alpha loci (P < 1 × 10−15) in HCC cases when contrasted with controls. This variation appears to be somatic in origin, reflecting differences between T‐cell receptor processing in lymphocytes from individuals with liver disease and healthy individuals that is not attributable to chronic hepatitis virus infection. Analysis of constitutional variation identified three susceptibility loci including the class II MHC complex, whose protein products present antigen to T‐cell receptors and mediate immune surveillance. Statistical analysis of biologic networks identified variation in the “antigen presentation and processing” pathway as being highly significantly associated with HCC (P = 1 × 10−11). SNP analysis identified two variants whose allele frequencies differ significantly between HCC and LC. One of these (P = 1.74 × 10−12) lies in the PTEN homolog TPTE2. Conclusion: Combined analysis of CNV, individual SNPs, and pathways suggest that HCC susceptibility is mediated by germline factors affecting the immune response and differences in T‐cell receptor processing. (HEPATOLOGY 2010)
Cancer Cell | 2015
Amy L. Walz; Ariadne H. A. G. Ooms; Samantha Gadd; Daniela S. Gerhard; Malcolm A. Smith; Jamie M. GuidryAuvil; Daoud Meerzaman; Qing Rong Chen; Chih Hao Hsu; Chunhua Yan; Cu Nguyen; Ying Hu; Reanne Bowlby; Denise Brooks; Yussanne Ma; Andrew J. Mungall; Richard A. Moore; Jacqueline E. Schein; Marco A. Marra; Vicki Huff; Jeffrey S. Dome; Yueh Yun Chi; Charles G. Mullighan; Jing Ma; David A. Wheeler; Oliver A. Hampton; Nadereh Jafari; Nicole Ross; Julie M. Gastier-Foster; Elizabeth J. Perlman
We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations. Significantly decreased expression of mature Let-7a and the miR-200 family (responsible for mesenchymal-to-epithelial transition) in miRNAPG mutant tumors is associated with an undifferentiated blastemal histology. The combination of SIX and miRNAPG mutations in the same tumor is associated with evidence of RAS activation and a higher rate of relapse and death.
Cancer Informatics | 2014
Ying Hu; Chunhua Yan; Chih-Hao Hsu; Qing-Rong Chen; Kelvin Niu; George Komatsoulis; Daoud Meerzaman
Summary OmicCircos is an R software package used to generate high-quality circular plots for visualizing genomic variations, including mutation patterns, copy number variations (CNVs), expression patterns, and methylation patterns. Such variations can be displayed as scatterplot, line, or text-label figures. Relationships among genomic features in different chromosome positions can be represented in the forms of polygons or curves. Utilizing the statistical and graphic functions in an R/Bioconductor environment, OmicCircos performs statistical analyses and displays results using cluster, boxplot, histogram, and heatmap formats. In addition, OmicCircos offers a number of unique capabilities, including independent track drawing for easy modification and integration, zoom functions, link-polygons, and position-independent heatmaps supporting detailed visualization. Availability and Implementation OmicCircos is available through Bioconductor at http://www.bioconductor.org/packages/devel/bioc/html/OmicCircos.html. An extensive vignette in the package describes installation, data formatting, and workflow procedures. The software is open source under the Artistic—2.0 license.
Nature Structural & Molecular Biology | 2016
Ballachanda N. Devaiah; Chanelle Case-Borden; Anne Gegonne; Chih Hao Hsu; Qing-Rong Chen; Daoud Meerzaman; Anup Dey; Keiko Ozato; Dinah S. Singer
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Although chromatin decompaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanisms involved are unknown. We report that BRD4 is a histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from those of other HATs. Both mouse and human BRD4 have intrinsic HAT activity. Importantly, BRD4 acetylates H3 K122, a residue critical for nucleosome stability, thus resulting in nucleosome eviction and chromatin decompaction. Nucleosome clearance by BRD4 occurs genome wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. These findings suggest a model wherein BRD4 actively links chromatin structure and transcription: it mediates chromatin decompaction by acetylating and evicting nucleosomes at target genes, thereby activating transcription.
Cancer Research | 2008
Hyo Sung Jeon; Tatiana Dracheva; Sei Hoon Yang; Daoud Meerzaman; Junya Fukuoka; Abbas Shakoori; Konstantin Shilo; William D. Travis; Jin Jen
The malignant transformation in several types of cancer, including lung cancer, results in a loss of growth inhibition by transforming growth factor-beta (TGF-beta). Here, we show that SMAD6 expression is associated with a reduced survival in lung cancer patients. Short hairpin RNA (shRNA)-mediated knockdown of SMAD6 in lung cancer cell lines resulted in reduced cell viability and increased apoptosis as well as inhibition of cell cycle progression. However, these results were not seen in Beas2B, a normal bronchial epithelial cell line. To better understand the mechanism underlying the association of SMAD6 with poor patient survival, we used a lentivirus construct carrying shRNA for SMAD6 to knock down expression of the targeted gene. Through gene expression analysis, we observed that knockdown of SMAD6 led to the activation of TGF-beta signaling through up-regulation of plasminogen activator inhibitor-1 and phosphorylation of SMAD2/3. Furthermore, SMAD6 knockdown activated the c-Jun NH2-terminal kinase pathway and reduced phosphorylation of Rb-1, resulting in increased G0-G1 cell arrest and apoptosis in the lung cancer cell line H1299. These results jointly suggest that SMAD6 plays a critical role in supporting lung cancer cell growth and survival. Targeted inactivation of SMAD6 may provide a novel therapeutic strategy for lung cancers expressing this gene.
Molecular and Cellular Biology | 2012
Anne Gegonne; Xuguang Tai; Jinghui Zhang; Gang Wu; Jianjian Zhu; Aki Yoshimoto; Jeffrey Hanson; Constance Cultraro; Qing Rong Chen; Terry I. Guinter; Zhihui Yang; Karen S. Hathcock; Alfred Singer; Jaime Rodriguez-Canales; Lino Tessarollo; Susan Mackem; Daoud Meerzaman; Kenneth H. Buetow; Dinah S. Singer
ABSTRACT TAF7, a component of the TFIID complex that nucleates the assembly of transcription preinitiation complexes, also independently interacts with and regulates the enzymatic activities of other transcription factors, including P-TEFb, TFIIH, and CIITA, ensuring an orderly progression in transcription initiation. Since not all TAFs are required in terminally differentiated cells, we examined the essentiality of TAF7 in cells at different developmental stages in vivo. Germ line disruption of the TAF7 gene is embryonic lethal between 3.5 and 5.5 days postcoitus. Mouse embryonic fibroblasts with TAF7 deleted cease transcription globally and stop proliferating. In contrast, whereas TAF7 is essential for the differentiation and proliferation of immature thymocytes, it is not required for subsequent, proliferation-independent differentiation of lineage committed thymocytes or for their egress into the periphery. TAF7 deletion in peripheral CD4 T cells affects only a small number of transcripts. However, T cells with TAF7 deleted are not able to undergo activation and expansion in response to antigenic stimuli. These findings suggest that TAF7 is essential for proliferation but not for proliferation-independent differentiation.