Anne Goriely
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Goriely.
Neuron | 2003
Ruth Diez del Corral; Isabel Olivera-Martinez; Anne Goriely; Emily Gale; Malcolm Maden; Kate G. Storey
Vertebrate body axis extension involves progressive generation and subsequent differentiation of new cells derived from a caudal stem zone; however, molecular mechanisms that preserve caudal progenitors and coordinate differentiation are poorly understood. FGF maintains caudal progenitors and its attenuation is required for neuronal and mesodermal differentiation and to position segment boundaries. Furthermore, somitic mesoderm promotes neuronal differentiation in part by downregulating Fgf8. Here we identify retinoic acid (RA) as this somitic signal and show that retinoid and FGF pathways have opposing actions. FGF is a general repressor of differentiation, including ventral neural patterning, while RA attenuates Fgf8 in neuroepithelium and paraxial mesoderm, where it controls somite boundary position. RA is further required for neuronal differentiation and expression of key ventral neural patterning genes. Our data demonstrate that FGF and RA pathways are mutually inhibitory and suggest that their opposing actions provide a global mechanism that controls differentiation during axis extension.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Anne Goriely; Gilean McVean; Ans M.M. van Pelt; Anthony W. O'Rourke; Steven A. Wall; Dirk G. de Rooij; Andrew O.M. Wilkie
Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.
American Journal of Human Genetics | 2006
Stephen R.F. Twigg; Kazuya Matsumoto; Alexa Kidd; Anne Goriely; Indira B. Taylor; Richard B. Fisher; A. Jeannette M. Hoogeboom; Irene M.J. Mathijssen; M. Teresa Lourenço; Jenny Morton; Elizabeth Sweeney; Louise C. Wilson; Han G. Brunner; John B. Mulliken; Steven A. Wall; Andrew O.M. Wilkie
Craniofrontonasal syndrome (CFNS) is an X-linked disorder that exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis, and additional minor malformations, but males are usually mildly affected with hypertelorism only. Despite this, males appear underrepresented in CFNS pedigrees, with carrier males encountered infrequently compared with affected females. To investigate these unusual genetic features of CFNS, we exploited the recent discovery of causative mutations in the EFNB1 gene, which encodes ephrin-B1, to survey the molecular alterations in 59 families (39 newly investigated and 20 published elsewhere). We identified the first complete deletions of EFNB1, catalogued 27 novel intragenic mutations, and used Pyrosequencing and analysis of nearby polymorphic alleles to quantify mosaic cases and to determine the parental origin of verified germline mutations. Somatic mosaicism was demonstrated in 6 of 53 informative families, and, of 17 germline mutations in individuals for whom the parental origin of mutation could be demonstrated, 15 arose from the father. We conclude that the major factor accounting for the relative scarcity of carrier males is the bias toward mutations in the paternal germline (which present as affected female offspring) combined with reduced reproductive fitness in affected females. Postzygotic mutations also contribute to the female preponderance, whereas true nonpenetrance in males who are hemizygous for an EFNB1 mutation appears unusual. These results highlight the importance of considering possible origins of mutation in the counseling of families with CFNS and provide a generally applicable approach to the combined analysis of mosaic and germline mutations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Karen M. Lower; Jim R. Hughes; Marco Gobbi; Shirley Henderson; Vip Viprakasit; Chris Fisher; Anne Goriely; Helena Ayyub; Jackie Sloane-Stanley; Douglas Vernimmen; Cordelia Langford; David Garrick; Richard J. Gibbons; Douglas R. Higgs
It is well established that all of the cis-acting sequences required for fully regulated human α-globin expression are contained within a region of ≈120 kb of conserved synteny. Here, we show that activation of this cluster in erythroid cells dramatically affects expression of apparently unrelated and noncontiguous genes in the 500 kb surrounding this domain, including a gene (NME4) located 300 kb from the α-globin cluster. Changes in NME4 expression are mediated by physical cis-interactions between this gene and the α-globin regulatory elements. Polymorphic structural variation within the globin cluster, altering the number of α-globin genes, affects the pattern of NME4 expression by altering the competition for the shared α-globin regulatory elements. These findings challenge the concept that the genome is organized into discrete, insulated regulatory domains. In addition, this work has important implications for our understanding of genome evolution, the interpretation of genome-wide expression, expression-quantitative trait loci, and copy number variant analyses.
The Journal of Pathology | 2011
Jasmine Lim; Anne Goriely; Gareth D. H. Turner; K.A. Ewen; Grete Krag Jacobsen; Niels Graem; Andrew O.M. Wilkie; Ewa Rajpert-De Meyts
Spermatocytic seminoma (SS) is a rare testicular neoplasm that occurs predominantly in older men. In this study, we aimed to shed light on the histogenesis of SS by investigating the developmental expression of protein markers that identify distinct subpopulations of human spermatogonia in the normal adult testis. We analysed the expression pattern of OCT2, SSX2‐4, and SAGE1 in 36 SS cases and four intratubular SS (ISS) as well as a series of normal testis samples throughout development. We describe for the first time two different types of SS characterized by OCT2 or SSX2‐4 immunoexpression. These findings are consistent with the mutually exclusive antigenic profile of these markers during different stages of testicular development and in the normal adult testis. OCT2 was expressed predominantly in Adark spermatogonia, SSX2‐4 was present in Apale and B spermatogonia and leptotene spermatocytes, whilst SAGE1 was exclusively present in a subset of post‐pubertal germ cells, most likely B spermatogonia. The presence of OCT2 and SSX2‐4 in distinct subsets of germ cells implies that these markers represent germ cells at different maturation stages. Analysis of SAGE1 and SSX2‐4 in ISS showed spatial differences suggesting ongoing maturation of germ cells during progression of SS tumourigenesis. We conclude that the expression pattern of OCT2, SSX2‐4, and SAGE1 supports the origin of SS from spermatogonia and provides new evidence for heterogeneity of this tumour, potentially linked either to the cellular origin of SS or to partial differentiation during tumour progression, including a hitherto unknown OCT2‐positive variant of the tumour likely derived from Adark spermatogonia. Copyright
Mechanisms of Development | 1999
Anne Goriely; Ruth Diez del Corral; Kate G. Storey
We have cloned c-Irx2, a chick homologue of the Xiro2 and mIrx2 genes and a new member of the Iroquois family of homeodomain-containing transcription factors. Strikingly, c-Irx2 expression reveals an early subdivision of the neural plate at late primitive streak stages which later transiently resolves to a single stripe within the developing hindbrain corresponding to rhombomere 1.
Human Molecular Genetics | 2015
Biljana Ilkovski; Alistair T. Pagnamenta; Gina L. O'Grady; Taroh Kinoshita; Malcolm F. Howard; Monkol Lek; Brett Thomas; Anne Turner; John Christodoulou; David Sillence; Samantha J. L. Knight; Niko Popitsch; David A. Keays; Consuelo Anzilotti; Anne Goriely; Leigh B. Waddell; Fabienne Brilot; Kathryn N. North; Noriyuki Kanzawa; Daniel G. MacArthur; Jenny C. Taylor; Usha Kini; Yoshiko Murakami; Nigel F. Clarke
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20–50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5′-UTR regions despite their typically low coverage in exome data.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Eleni Giannoulatou; Gilean McVean; Indira B. Taylor; Simon J. McGowan; Geoffrey J. Maher; Zamin Iqbal; Susanne P. Pfeifer; Isaac Turner; Emma Burkitt Wright; Jennifer Shorto; Aysha Itani; Karen Turner; Lorna Gregory; David Buck; Ewa Rajpert-De Meyts; Leendert Looijenga; Bronwyn Kerr; Andrew O.M. Wilkie; Anne Goriely
Significance Harvey rat sarcoma viral oncogene homolog (HRAS) occupies an important place in medical history, because it was the first gene in which acquired mutations that led to activation of a normal protein were associated with cancer, making it the prototype of the now canonical oncogene mechanism. Here, we explore what happens when similar HRAS mutations occur in male germ cells, an issue of practical importance because the mutations cause a serious congenital disorder, Costello syndrome, if transmitted to offspring. We provide evidence that the mutant germ cells are positively selected, leading to an increased burden of the mutations as men age. Although there are many parallels between this germline process and classical oncogenesis, there are interesting differences of detail, which are explored in this paper. The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.
Journal of Andrology | 2014
Geoffrey J. Maher; Anne Goriely; Andrew O.M. Wilkie
Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed ‘immunopositive tubules’, there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self‐renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations.
Human Molecular Genetics | 2013
Stephen R.F. Twigg; Christian Babbs; Marijke E.P. van den Elzen; Anne Goriely; Stephen Taylor; Simon J. McGowan; Eleni Giannoulatou; Lorne Lonie; Jiannis Ragoussis; Elham Sadighi Akha; Samantha J. L. Knight; Roseli Maria Zechi-Ceide; Jeannette Hoogeboom; Barbara R. Pober; Helga V. Toriello; Steven A. Wall; M. Rita Passos-Bueno; Han G. Brunner; Irene M.J. Mathijssen; Andrew O.M. Wilkie
Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries—a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5′ untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5′ UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females.