Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Hultquist is active.

Publication


Featured researches published by Anne Hultquist.


Cell | 2005

Identification of Flt3 + Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential: A Revised Road Map for Adult Blood Lineage Commitment

Jörgen Adolfsson; Robert Månsson; Natalija Buza-Vidas; Anne Hultquist; Karina Liuba; Christina T. Jensen; David Bryder; Liping Yang; Ole-Johan Borge; Lina Thorén; Kristina Anderson; Ewa Sitnicka; Yutaka Sasaki; Mikael Sigvardsson; Sten Eirik W. Jacobsen

All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1+c-kit+Flt3- HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin-Sca-1+c-kit+CD34+Flt3+ cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.


Cell Stem Cell | 2013

Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.

Charlotta Böiers; Joana Carrelha; Michael Lutteropp; Sidinh Luc; Joanna C.A. Green; Emanuele Azzoni; Petter S. Woll; Adam Mead; Anne Hultquist; Gemma Swiers; Elisa Gomez Perdiguero; Iain C Macaulay; Luca Melchiori; Tiago C. Luis; Shabnam Kharazi; Tiphaine Bouriez-Jones; Qiaolin Deng; Annica Pontén; Deborah Atkinson; Christina T. Jensen; Ewa Sitnicka; Frederic Geissmann; Isabelle Godin; Rickard Sandberg; Marella de Bruijn; Sten Eirik W. Jacobsen

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Nature Immunology | 2012

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Sidinh Luc; Tiago C. Luis; Hanane Boukarabila; Iain C Macaulay; Natalija Buza-Vidas; Tiphaine Bouriez-Jones; Michael Lutteropp; Petter S. Woll; Stephen Loughran; Adam Mead; Anne Hultquist; John Brown; Takuo Mizukami; S Matsuoka; Helen Ferry; Kristina Anderson; Deborah Atkinson; Shamit Soneji; Aniela Domanski; Alison Farley; Alejandra Sanjuan-Pla; Cintia Carella; Roger Patient; Marella de Bruijn; Tariq Enver; Claus Nerlov; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.


Blood | 2011

FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells

Natalija Buza-Vidas; Petter S. Woll; Anne Hultquist; Michael Lutteropp; Tiphaine Bouriez-Jones; Helen Ferry; Sidinh Luc; Sten Eirik W. Jacobsen

Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.


Blood | 2011

Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation

Shabnam Kharazi; Adam Mead; Anna Mansour; Anne Hultquist; Charlotta Böiers; Sidinh Luc; Natalija Buza-Vidas; Zhi Ma; Helen Ferry; Debbie Atkinson; Kristian Reckzeh; Kristina Masson; Jörg Cammenga; Lars Rönnstrand; Fumio Arai; Toshio Suda; Claus Nerlov; Ewa Sitnicka; Sten Eirik W. Jacobsen

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.


Blood | 2010

Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development

Charlotta Böiers; Natalija Buza-Vidas; Christina T. Jensen; Cornelis J.H. Pronk; Shabnam Kharazi; Lilian Wittmann; Ewa Sitnicka; Anne Hultquist; Sten Eirik W. Jacobsen

Mice deficient in c-fms-like tyrosine kinase 3 (FLT3) signaling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harboring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors (GMP), possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function, and role of FLT3 in recently identified early GMPs. Flt3-cre fate-mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3-expressing progenitors. A higher expression of FLT3 was found in preGMP compared with GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both thrombopoietin (THPO) and FL had a more pronounced GMP phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and -independent regulation of GMPs, of likely significance for myeloid malignancies with Flt3-ITD mutations.


Nature Communications | 2018

De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A -rearranged leukemia

Axel Hyrenius-Wittsten; Mattias Pilheden; Helena Sturesson; Jenny Hansson; Michael P. Walsh; Guangchun Song; Julhash U. Kazi; Jian Liu; Ramprasad Ramakrishan; Cristian Garcia-Ruiz; Stephanie Nance; Pankaj Gupta; Jinghui Zhang; Lars Rönnstrand; Anne Hultquist; James R. Downing; Karin Lindkvist-Petersson; Kajsa Paulsson; Marcus Järås; Tanja A. Gruber; Jing Ma; Anna K. Hagström-Andersson

Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3ITD, FLT3N676K, and NRASG12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the KrasG12D locus, consistent with a strong selective advantage of additional KrasG12D. KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver.In acute leukemia with KMT2A rearrangements (KMT2A-R), activating signaling mutations are common. Here, the authors use a retroviral acute myeloid mouse leukemia model to show that subclonal de novo activating mutations drive clonal evolution in acute leukemia with KMT2A-R and enhance clonal fitness.


Stem Cells International | 2018

The Myc/Max/Mxd Network Is a Target of Mutated Flt3 Signaling in Hematopoietic Stem Cells in Flt3-ITD-Induced Myeloproliferative Disease

Farhan Basit; Maria Andersson; Anne Hultquist

Acute myeloid leukemia (AML) has poor prognosis due to various mutations, e.g., in the FLT3 gene. Therefore, it is important to identify pathways regulated by the activated Flt3 receptor for the discovery of new therapeutic targets. The Myc network of oncogenes and tumor suppressor genes is involved in mechanisms regulating proliferation and survival of cells, including that of the hematopoietic system. In this study, we evaluated the expression of the Myc oncogenes and Mxd antagonists in hematopoietic stem cell and myeloid progenitor populations in the Flt3-ITD-knockin myeloproliferative mouse model. Our data shows that the expression of Myc network genes is changed in Flt3-ITD mice compared with the wild type. Mycn is increased in multipotent progenitors and in the pre-GM compartment of myeloid progenitors in the ITD mice while the expression of several genes in the tumor suppressor Mxd family, including Mxd1, Mxd2, and Mxd4, is concomitantly downregulated, as well as the expression of the Mxd-related gene Mnt and the transcriptional activator Miz-1. LSKCD150+CD48− hematopoietic long-term stem cells are decreased in the Flt3-ITD cells while multipotent progenitors are increased. Of note, PKC412-mediated inhibition of Flt3-ITD signaling results in downregulation of cMyc and upregulation of the Myc antagonists Mxd1, Mxd2, and Mxd4. Our data provides new mechanistic insights into downstream alterations upon aberrant Flt3 signaling and rationale for combination therapies for tyrosine kinase inhibitors with Myc antagonists in treating AML.


Immunity | 2007

Molecular Evidence for Hierarchical Transcriptional Lineage Priming in Fetal and Adult Stem Cells and Multipotent Progenitors

Robert Månsson; Anne Hultquist; Sidinh Luc; Liping Yang; Kristina Anderson; Shabnam Kharazi; Suleiman Al-Hashmi; Karina Liuba; Lina Thorén; Jörgen Adolfsson; Natalija Buza-Vidas; Hong Qian; Shamit Soneji; Tariq Enver; Mikael Sigvardsson; Sten Eirik W. Jacobsen


Experimental hematology & oncology | 2015

Pharmacologically relevant doses of valproate upregulate CD20 expression in three diffuse large B-cell lymphoma patients in vivo

Jesper Kofoed Damm; Sandra Gordon; Mats Ehinger; Mats Jerkeman; Urban Gullberg; Anne Hultquist; Kristina Drott

Collaboration


Dive into the Anne Hultquist's collaboration.

Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge