Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sten Eirik W. Jacobsen is active.

Publication


Featured researches published by Sten Eirik W. Jacobsen.


Science | 2012

A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells

Christian Schulz; Elisa Gomez Perdiguero; Laurent Chorro; Heather L. Szabo-Rogers; Nicolas Cagnard; Katrin Kierdorf; Marco Prinz; Bishan Wu; Sten Eirik W. Jacobsen; Jeffrey W. Pollard; Jon Frampton; Karen J. Liu; Frederic Geissmann

Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.


Nature Medicine | 2004

Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.

Jens Martin Nygren; Stefan Jovinge; Martin Breitbach; Petter Säwén; Wilhelm Röll; Jürgen Hescheler; Jalal Taneera; Bernd K. Fleischmann; Sten Eirik W. Jacobsen

Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow–derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow–derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.


Cell | 2005

Identification of Flt3 + Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential: A Revised Road Map for Adult Blood Lineage Commitment

Jörgen Adolfsson; Robert Månsson; Natalija Buza-Vidas; Anne Hultquist; Karina Liuba; Christina T. Jensen; David Bryder; Liping Yang; Ole-Johan Borge; Lina Thorén; Kristina Anderson; Ewa Sitnicka; Yutaka Sasaki; Mikael Sigvardsson; Sten Eirik W. Jacobsen

All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1+c-kit+Flt3- HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin-Sca-1+c-kit+CD34+Flt3+ cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.


Immunity | 2001

Upregulation of Flt3 Expression within the Bone Marrow Lin−Sca1+c-kit+ Stem Cell Compartment Is Accompanied by Loss of Self-Renewal Capacity

Jörgen Adolfsson; Ole Johan Borge; David Bryder; Kim Theilgaard-Mönch; Ingbritt Åstrand-Grundström; Ewa Sitnicka; Yutaka Sasaki; Sten Eirik W. Jacobsen

Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.


Nature Immunology | 2006

Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block

Peggy Kirstetter; Kristina Anderson; Bo T Porse; Sten Eirik W. Jacobsen; Claus Nerlov

Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression of a stable form of β-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21cdk), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin−Sca-1+c-Kit+ cells, whereas PU.1 was upregulated in erythroid progenitors. Constitutive activation of canonical Wnt signaling therefore causes multilineage differentiation block and compromised hematopoietic stem cell maintenance.


Cell Stem Cell | 2007

Critical Role of Thrombopoietin in Maintaining Adult Quiescent Hematopoietic Stem Cells

Hong Qian; Natalija Buza-Vidas; Craig D. Hyland; Christina T. Jensen; Jennifer Antonchuk; Robert Månsson; Lina Thorén; Marja Ekblom; Warren S. Alexander; Sten Eirik W. Jacobsen

The role of cytokines in regulation of hematopoietic stem cells (HSCs) remains poorly understood. Herein we demonstrate that thrombopoietin (THPO) and its receptor, MPL, are critically involved in postnatal steady-state HSC maintenance, reflected in a 150-fold reduction of HSCs in adult Thpo(-/-) mice. Further, whereas THPO and MPL proved not required for fetal HSC expansion, HSC expansion posttransplantation was highly MPL and THPO dependent. The distinct role of THPO in postnatal HSC maintenance is accompanied by accelerated HSC cell-cycle kinetics in Thpo(-/-) mice and reduced expression of the cyclin-dependent kinase inhibitors p57(Kip2) and p19(INK4D) as well as multiple Hox transcription factors. Although also predicted to be an HSC viability factor, BCL2 failed to rescue the HSC deficiency of Thpo(-/-) mice. Thus, THPO regulates posttransplantation HSC expansion as well as the maintenance of adult quiescent HSCs, of critical importance to avoid postnatal HSC exhaustion.


Cancer Cell | 2011

Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia

Nicolas Goardon; Emanuele Marchi; Ann Atzberger; Lynn Quek; Anna Schuh; Shamit Soneji; Petter S. Woll; Adam Mead; Kate A. Alford; Raj Rout; Salma Chaudhury; Amanda F. Gilkes; Steven Knapper; Kheira Beldjord; Suriya Begum; Susan Rose; Nicola Geddes; Mike Griffiths; Graham R. Standen; Alexander Sternberg; Jamie Cavenagh; Hannah Hunter; David G. Bowen; Sally Killick; L. G. Robinson; A J Price; Elizabeth Macintyre; Paul Virgo; Alan Kenneth Burnett; Charles Craddock

The relationships between normal and leukemic stem/progenitor cells are unclear. We show that in ∼80% of primary human CD34+ acute myeloid leukemia (AML), two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. Both populations have leukemic stem cell (LSC) activity and are hierarchically ordered; one LSC population gives rise to the other. Global gene expression profiling shows the LSC populations are molecularly distinct and resemble normal progenitors but not stem cells. The more mature LSC population most closely mirrors normal granulocyte-macrophage progenitors (GMP) and the immature LSC population a previously uncharacterized progenitor functionally similar to lymphoid-primed multipotential progenitors (LMPPs). This suggests that in most cases primary CD34+ AML is a progenitor disease where LSCs acquire abnormal self-renewal potential.


Nature Genetics | 2009

DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction

Ann-Marie Bröske; Lena Vockentanz; Shabnam Kharazi; Matthew R. Huska; Elena Mancini; Marina Scheller; Christiane Kuhl; Andreas Enns; Marco Prinz; Rudolf Jaenisch; Claus Nerlov; Achim Leutz; Miguel A. Andrade-Navarro; Sten Eirik W. Jacobsen; Frank Rosenbauer

DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect stem cells from premature activation of predominant differentiation programs and suggest that methylation dynamics determine stem cell functions in tissue homeostasis and cancer.


Journal of Experimental Medicine | 2011

The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance

Monika Mortensen; Elizabeth J. Soilleux; Gordana Djordjevic; Rebecca Tripp; Michael Lutteropp; Elham Sadighi-Akha; Amanda J. Stranks; Julie Glanville; Samantha J. L. Knight; Sten Eirik W. Jacobsen; Kamil R. Kranc; Anna Katharina Simon

Adult mouse LSK cells unable to undergo autophagy contain fewer HSCs, accumulate mitochondria, and fail to reconstitute lethally irradiated mice.


The Journal of Neuroscience | 2006

Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis

Robert E. Iosif; Christine T. Ekdahl; Henrik Ahlenius; Cornelis J.H. Pronk; Sara Bonde; Zaal Kokaia; Sten Eirik W. Jacobsen; Olle Lindvall

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-α effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-α and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-α levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1−/− and TNF-R1/R2−/− mice, whereas no significant changes were detected in TNF-R2−/− mice. Also after SE, the TNF-R1−/− and TNF-R1/R2−/− mice produced more new neurons. In contrast, the TNF-R2−/− mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1−/− and TNF-R1/R2−/− mice both under basal conditions and after SE. The TNF-R2−/− mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.

Collaboration


Dive into the Sten Eirik W. Jacobsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Nerlov

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Hellström-Lindberg

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge