Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Konzer is active.

Publication


Featured researches published by Anne Konzer.


Molecular & Cellular Proteomics | 2012

On Marathons and Sprints: An Integrated Quantitative Proteomics and Transcriptomics Analysis of Differences Between Slow and Fast Muscle Fibers

Hannes C. A. Drexler; Aaron Ruhs; Anne Konzer; Luca Mendler; Mark Bruckskotten; Mario Looso; Stefan Günther; Thomas Boettger; Marcus Krüger; Thomas Braun

Skeletal muscle tissue contains slow as well as fast twitch muscle fibers that possess different metabolic and contractile properties. Although the distribution of individual proteins in fast and slow fibers has been investigated extensively, a comprehensive proteomic analysis, which is key for any systems biology approach to muscle tissues, is missing. Here, we compared the global protein levels and gene expression profiles of the predominantly slow soleus and fast extensor digitorum longus muscles using the principle of in vivo stable isotope labeling with amino acids based on a fully lysine-6 labeled SILAC-mouse. We identified 551 proteins with significant quantitative differences between slow soleus and fast extensor digitorum longus fibers out of >2000 quantified proteins, which greatly extends the repertoire of proteins differentially regulated between both muscle types. Most of the differentially regulated proteins mediate cellular contraction, ion homeostasis, glycolysis, and oxidation, which reflect the major functional differences between both muscle types. Comparison of proteomics and transcriptomics data uncovered the existence of fiber-type specific posttranscriptional regulatory mechanisms resulting in differential accumulation of Myosin-8 and α-protein kinase 3 proteins and mRNAs among others. Phosphoproteome analysis of soleus and extensor digitorum longus muscles identified 2573 phosphosites on 973 proteins including 1040 novel phosphosites. The in vivo stable isotope labeling with amino acids-mouse approach used in our study provides a comprehensive view into the protein networks that direct fiber-type specific functions and allows a detailed dissection of the molecular composition of slow and fast muscle tissues with unprecedented resolution.


PLOS Genetics | 2013

Integrative ''Omics''-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses

Bork A. Berghoff; Anne Konzer; Nils N. Mank; Mario Looso; Tom Rische; Konrad U. Förstner; Marcus Krüger; Gabriele Klug

Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level (“expressome”). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions.


Molecular and Cellular Biology | 2012

Novel roles of Caenorhabditis elegans heterochromatin protein HP1 and linker histone in the regulation of innate immune gene expression.

Maja Studencka; Anne Konzer; Gael Moneron; Dirk Wenzel; Lennart Opitz; Gabriela Salinas-Riester; Cécile Bedet; Marcus Krüger; Stefan W. Hell; Jacek R. Wisniewski; Henning Schmidt; Francesca Palladino; Ekkehard Schulze; Monika Jedrusik-Bode

ABSTRACT Linker histone (H1) and heterochromatin protein 1 (HP1) are essential components of heterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark of vertebrate histone H1 is specifically recognized by the chromodomain of HP1. However, the exact biological role of linker histone binding to HP1 has not been determined. Here, we investigate the function of the Caenorhabditis elegans H1 variant HIS-24 and the HP1-like proteins HPL-1 and HPL-2 in the cooperative transcriptional regulation of immune-relevant genes. We provide the first evidence that HPL-1 interacts with HIS-24 monomethylated at lysine 14 (HIS-24K14me1) and associates in vivo with promoters of genes involved in antimicrobial response. We also report an increase in overall cellular levels and alterations in the distribution of HIS-24K14me1 after infection with pathogenic bacteria. HIS-24K14me1 localization changes from being mostly nuclear to both nuclear and cytoplasmic in the intestinal cells of infected animals. Our results highlight an antimicrobial role of HIS-24K14me1 and suggest a functional link between epigenetic regulation by an HP1/H1 complex and the innate immune system in C. elegans.


Journal of Proteome Research | 2012

Spiked-in pulsed in vivo labeling identifies a new member of the CCN family in regenerating newt hearts.

Mario Looso; Christian S. Michel; Anne Konzer; Marc Bruckskotten; Thilo Borchardt; Marcus Krüger; Thomas Braun

The newt Notophthalmus viridescens , which belongs to the family of salamanders (Urodela), owns remarkable regenerative capacities allowing efficient scar-free repair of various organs including the heart. Salamanders can regrow large parts of the myocardium unlike mammals, which cannot replace lost cardiomyocytes efficiently. Unfortunately, very little is known about the molecules and the regulatory circuits facilitating efficient heart regeneration in newts or salamanders. To identify proteins that are involved in heart regeneration, we have developed a pulsed SILAC-based mass spectrometry method based on the detection of paired peptide peaks after ¹³C₆-lysine incorporation into proteins in vivo. Proteins were identified by matching mass spectrometry derived peptide sequences to a recently established normalized newt EST library. Our approach enabled us to identify more than 2200 nonredundant proteins in the regenerating newt heart. Because of the pulsed in vivo labeling approach, accurate quantification was achieved for 1353 proteins, of which 72 were up- and 31 down-regulated with a (|log 2 ratio| > 1) during heart regeneration. One deregulated member was identified as a new member of the CCN protein family, showing a wound specific activation. We reason that the detection of such deregulated newt-specific proteins in regenerating hearts supports the idea of a local evolution of tissue regeneration in salamanders. Our results significantly improve understanding of dynamic changes in the complex protein network that underlies heart regeneration and provides a basis for further mechanistic studies.


Molecular & Cellular Proteomics | 2013

Stable Isotope Labeling in Zebrafish Allows in Vivo Monitoring of Cardiac Morphogenesis

Anne Konzer; Aaron Ruhs; Helene Braun; Thomas Braun; Marcus Krüger

Quantitative proteomics is an important tool to study biological processes, but so far it has been challenging to apply to zebrafish. Here, we describe a large scale quantitative analysis of the zebrafish proteome using a combination of stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS). Proteins derived from the fully labeled fish were used as a standard to quantify changes during embryonic heart development. LC-MS-assisted analysis of the proteome of activated leukocyte cell adhesion molecule zebrafish morphants revealed a down-regulation of components of the network required for cell adhesion and maintenance of cell shape as well as secondary changes due to arrest of cellular differentiation. Quantitative proteomics in zebrafish using the stable isotope-labeling technique provides an unprecedented resource to study developmental processes in zebrafish.


Biochimica et Biophysica Acta | 2015

Neuroproteomics tools in clinical practice.

Ganna Shevchenko; Anne Konzer; Sravani Musunuri; Jonas Bergquist

Neurodegenerative disorders such as Alzheimers disease (AD), Parkinsons disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by neuronal impairment that leads to disease-specific changes in the neuronal proteins. The early diagnosis of these disorders is difficult, thus, the need for identifying, developing and using valid clinically applicable biomarkers that meet the criteria of precision, specificity and repeatability is very vital. The application of rapidly emerging technology such as mass spectrometry (MS) in proteomics has opened new avenues to accelerate biomarker discovery, both for diagnostic as well as for prognostic purposes. This review summarizes the most recent advances in the mass spectrometry-based neuroproteomics and analyses the current and future directions in the biomarker discovery for the neurodegenerative diseases. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.


Proteomics | 2015

Dynamics of zebrafish fin regeneration using a pulsed SILAC approach

Hendrik Nolte; Soraya Hölper; Michael P. Housley; Shariful Islam; Tanja Piller; Anne Konzer; Didier Y. R. Stainier; Thomas Braun; Marcus Krüger

The zebrafish owns remarkable regenerative capacities allowing regeneration of several tissues, including the heart, liver, and brain. To identify protein dynamics during fin regeneration we used a pulsed SILAC approach that enabled us to detect the incorporation of 13C6‐lysine (Lys6) into newly synthesized proteins. Samples were taken at four different time points from noninjured and regrowing fins and incorporation rates were monitored using a combination of single‐shot 4‐h gradients and high‐resolution tandem MS. We identified more than 5000 labeled proteins during the first 3 weeks of fin regeneration and were able to monitor proteins that are responsible for initializing and restoring the shape of these appendages. The comparison of Lys6 incorporation rates between noninjured and regrowing fins enabled us to identify proteins that are directly involved in regeneration. For example, we observed increased incorporation rates of two actinodin family members at the actinotrichia, which is a hairlike fiber structure at the tip of regrowing fins. Moreover, we used quantitative real‐time RNA measurements of several candidate genes, including osteoglycin, si:ch211–288h17.3, and prostaglandin reductase 1 to correlate the mRNA expression to Lys6 incorporation data. This novel pulsed SILAC methodology in fish can be used as a versatile tool to monitor newly synthesized proteins and will help to characterize protein dynamics during regenerative processes in zebrafish beyond fin regeneration.


Molecular Biology and Evolution | 2015

Quantitative mass spectrometry reveals partial translational regulation for dosage compensation in chicken

Severin Uebbing; Anne Konzer; Luohao Xu; Niclas Backström; Björn Brunström; Jonas Bergquist; Hans Ellegren

There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography–tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution.


Journal of Proteome Research | 2017

Posttranscriptional Regulation in Adenovirus Infected Cells

Hongxing Zhao; Anne Konzer; Jia Mi; Moashan Chen; Ulf Pettersson; Sara Bergström Lind

A deeper understanding of how viruses reprogram their hosts for production of progeny is needed to combat infections. Most knowledge on the regulation of cellular gene expression during adenovirus infection is derived from mRNA studies. Here, we investigated the changes in protein expression during the late phase of adenovirus type 2 (Ad2) infection of the IMR-90 cell line by stable isotope labeling in cell culture with subsequent liquid chromatography-high resolution tandem mass spectrometric analysis. Two biological replicates of samples collected at 24 and 36 h post-infection (hpi) were investigated using swapped labeling. In total, 2648 and 2394 proteins were quantified at 24 and 36 hpi, respectively. Among them, 659 and 645 were deregulated >1.6-fold at the two time points. The protein expression was compared with RNA expression using cDNA sequencing data. The correlation was surprisingly low (r = 0.3), and several examples of posttranscriptional regulation were observed; e.g., proteins related to carbohydrate metabolism were up-regulated at the protein level but unchanged at the RNA level, whereas histone proteins were down-regulated at the protein level but up-regulated at the RNA level. The deregulation of cellular gene expression by adenovirus is mediated at multiple levels and more complex than hitherto believed.


Molecular & Cellular Proteomics | 2017

A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle

Arvind Venkat Namuduri; Gabriel Heras; Jia Mi; Nicola Cacciani; Katarina Hörnaeus; Anne Konzer; Sara Bergström Lind; Lars Larsson; Stefano Gastaldello

The small ubiquitin-like modifier (SUMO) is as a regulator of many cellular functions by reversible conjugation to a broad number of substrates. Under endogenous or exogenous perturbations, the SUMO network becomes a fine sensor of stress conditions by alterations in the expression level of SUMO enzymes and consequently changing the status of SUMOylated proteins. The diaphragm is the major inspiratory muscle, which is continuously active under physiological conditions, but its structure and function is severely affected when passively displaced for long extents during mechanical ventilation (MV). An iatrogenic condition called Ventilator-Induced Diaphragm Dysfunction (VIDD) is a major cause of failure to wean patients from ventilator support but the molecular mechanisms underlying this dysfunction are not fully understood. Using a unique experimental Intensive Care Unit (ICU) rat model allowing long-term MV, diaphragm muscles were collected in rats control and exposed to controlled MV (CMV) for durations varying between 1 and 10 days. Endogenous SUMOylated diaphragm proteins were identified by mass spectrometry and validated with in vitro SUMOylation systems. Contractile, calcium regulator and mitochondrial proteins were of specific interest due to their putative involvement in VIDD. Differences were observed in the abundance of SUMOylated proteins between glycolytic and oxidative muscle fibers in control animals and high levels of SUMOylated proteins were present in all fibers during CMV. Finally, previously reported VIDD biomarkers and therapeutic targets were also identified in our datasets which may play an important role in response to muscle weakness seen in ICU patients. Data are available via ProteomeXchange with identifier PXD006085. Username: [email protected], Password: rwcP5W0o.

Collaboration


Dive into the Anne Konzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge