Anne L. Wheeler
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne L. Wheeler.
Science | 2014
Katherine G. Akers; Alonso Martinez-Canabal; Leonardo Restivo; Adelaide P. Yiu; Antonietta De Cristofaro; Anne L. Wheeler; Axel Guskjolen; Yosuke Niibori; Hirotaka Shoji; Koji Ohira; Blake A. Richards; Tsuyoshi Miyakawa; Sheena A. Josselyn; Paul W. Frankland
Forget It! When examining the relationship between the production of new neurons in the hippocampus and memory, studies have generally first manipulated hippocampal neurogenesis and afterward investigated memory formation and found that new neurons help to encode new memories. However, when investigating how similar manipulations of neurogenesis impact established hippocampus-dependent memories, Akers et al. (p. 598; see the Perspective by Mongiat and Schinder) uncovered a role for neurogenesis in memory clearance. Thus, the continuous addition of new neurons both degrades existing information stored in hippocampal circuits and simultaneously provides substrates for new learning. Addition of new neurons leads to remodeling of hippocampal circuitry and memory degradation. [Also see Perspective by Mongiat and Schinder] Throughout life, new neurons are continuously added to the dentate gyrus. As this continuous addition remodels hippocampal circuits, computational models predict that neurogenesis leads to degradation or forgetting of established memories. Consistent with this, increasing neurogenesis after the formation of a memory was sufficient to induce forgetting in adult mice. By contrast, during infancy, when hippocampal neurogenesis levels are high and freshly generated memories tend to be rapidly forgotten (infantile amnesia), decreasing neurogenesis after memory formation mitigated forgetting. In precocial species, including guinea pigs and degus, most granule cells are generated prenatally. Consistent with reduced levels of postnatal hippocampal neurogenesis, infant guinea pigs and degus did not exhibit forgetting. However, increasing neurogenesis after memory formation induced infantile amnesia in these species.
Hippocampus | 2011
Scellig Stone; Cátia Teixeira; Kirill Zaslavsky; Anne L. Wheeler; Alonso Martinez-Canabal; Afra H. Wang; Masanori Sakaguchi; Andres M. Lozano; Paul W. Frankland
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult‐generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult‐generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult‐generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus‐dependent memory in intact mice. First, in the water maze task, rates of integration of adult‐generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult‐generated DGCs. Third, these findings generalized to another hippocampus‐dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult‐generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages.
Nature Neuroscience | 2009
Szu-Han Wang; Cátia M. Teixeira; Anne L. Wheeler; Paul W. Frankland
Although the clarity of many memories fades with time, some memories may maintain their original precision. Here we used a context discrimination procedure to evaluate whether the hippocampus is important in maintaining precision as memories mature. Spared discrimination in hippocampal-lesioned mice indicated that precise, remote context memories may be supported by extra-hippocampal brain regions.
Frontiers in Human Neuroscience | 2014
Anne L. Wheeler; Aristotle N. Voineskos
In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder.
PLOS Computational Biology | 2013
Anne L. Wheeler; Cátia Teixeira; Afra H. Wang; Xuejian Xiong; Natasa Kovacevic; Jason P. Lerch; Anthony R. McIntosh; John Parkinson; Paul W. Frankland
Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.
JAMA Psychiatry | 2015
Anne L. Wheeler; Michèle Wessa; Philip R. Szeszko; George Foussias; M. Mallar Chakravarty; Jason P. Lerch; Pamela DeRosse; Gary Remington; Benoit H. Mulsant; Julia Linke; Anil K. Malhotra; Aristotle N. Voineskos
IMPORTANCE The clinical heterogeneity of schizophrenia has hindered neurobiological investigations aimed at identifying neural correlates of the disorder. OBJECTIVE To identify network-based biomarkers across the spectrum of impairment present in schizophrenia by separately evaluating individuals with deficit and nondeficit subtypes of this disorder. DESIGN, SETTING, AND PARTICIPANTS A university hospital network-based neuroimaging study was conducted between February 1, 2007, and February 28, 2012. Participants included patients with schizophrenia (n = 128) and matched healthy controls (n = 130) from two academic centers and patients with bipolar I disorder (n = 39) and matched healthy controls (n = 43) from a third site. Patients with schizophrenia at each site in the top quartile on the proxy scale for the deficit syndrome were classified as having deficit schizophrenia and those in the bottom quartile were classified as having nondeficit schizophrenia. EXPOSURE All participants underwent magnetic resonance brain imaging. MAIN OUTCOMES AND MEASURES Network-level properties of cortical thickness were assessed in each group. Interregional cortexwide coupling was compared among the groups, and graph theoretical approaches were used to assess network density and node degree, betweenness, closeness, and eigenvector centrality. RESULTS Stronger frontoparietal and frontotemporal coupling was found in patients with deficit schizophrenia compared with those with nondeficit schizophrenia (17 of 1326 pairwise relationships were significantly different, P < .05; 5% false discovery rate) and in patients with deficit schizophrenia compared with healthy controls (49 of 1326 pairwise relationships were significantly different, P < .05; 5% false discovery rate). Participants with nondeficit schizophrenia and bipolar I disorder did not show significant differences in coupling relative to those in the control groups (for both comparisons, 0 of 1326 pairwise relationships were significantly different, P > .05; 5% false discovery rate). The networks formed from patients with deficit schizophrenia demonstrated increased density of connections relative to controls and nondeficit patients (range, 0.07-0.45 in controls, 0.09-0.43 in the nondeficit group, and 0.18-0.67 in the deficit group). High centrality nodes were identified in the supramarginal, middle, and superior temporal and inferior frontal regions in deficit schizophrenia networks based on ranking of 4 centrality metrics. High centrality regions were identified as those that ranked in the top 10 in 50% or more of the thresholded networks in 3 or more of the centrality measures. Network properties were similar in patients with deficit schizophrenia from both study sites. CONCLUSIONS AND RELEVANCE Patients with schizophrenia at one end of a spectrum show characteristic signatures of altered intracortical relationships compared with those at the other end of that spectrum, patients with bipolar I disorder, and healthy individuals. Cortical connectomic approaches can be used to reliably identify neural signatures in clinically heterogeneous groups of patients.
The Journal of Neuroscience | 2013
Anne L. Wheeler; Jason P. Lerch; M. Mallar Chakravarty; Miriam Friedel; John G. Sled; Paul J. Fletcher; Sheena A. Josselyn; Paul W. Frankland
Cocaine dependence is associated with abnormalities in brain structure in humans. However, it is unclear whether these differences in brain structure predispose an individual to drug use or are a result of cocaines action on the brain. This study investigates the impact of chronic cocaine exposure on brain structure and drug-related behavior in mice. Specifically, mice received daily cocaine or saline injections for 20 d during two developmental time periods: adolescence (27–46 d old) and young adulthood (60–79 d old). Following 30 d of abstinence, either fixed brain T2 weighted magnetic resonance images were acquired on a 7 T scanner at 32 μm isotropic voxel dimensions or mice were assessed for sensitization to the locomotor stimulant effects of cocaine. Three automated techniques (deformation-based morphometry, striatum shape analysis, and cortical thickness assessment) were used to identify population differences in brain structure in cocaine-exposed versus saline-exposed mice. We found that cocaine induced changes in brain structure, and these were most pronounced in mice exposed to cocaine during adolescence. Many of these changes occurred in brain regions previously implicated in addiction including the nucleus accumbens, striatum, insular cortex, orbitofrontal cortex, and medial forebrain bundle. Furthermore, exposure to the same cocaine regimen caused sensitization to the locomotor stimulant effects of cocaine, and these effects were again more pronounced in mice exposed to cocaine during adolescence. These results suggest that altered brain structure following 1 month of abstinence may contribute to these persistent drug-related behaviors, and identify cocaine exposure as the cause of these morphological changes.
Schizophrenia Bulletin | 2014
Anne L. Wheeler; M. Mallar Chakravarty; Jason P. Lerch; Jon Pipitone; Zafiris J. Daskalakis; Tarek K. Rajji; Benoit H. Mulsant; Aristotle N. Voineskos
BACKGROUND Prominent regional cortical thickness reductions have been shown in schizophrenia. In contrast, little is known regarding alterations of structural coupling between regions in schizophrenia and how these alterations may be related to cognitive impairments in this disorder. METHODS T1-weighted magnetic resonance images were acquired in 54 patients with schizophrenia and 68 healthy control subjects aged 18-55 years. Cortical thickness was compared between groups using a vertex-wise approach. To assess structural coupling, seeds were selected within regions of reduced thickness, and brain-wide cortical thickness correlations were compared between groups. The relationships between identified patterns of circuit structure disruption and cognitive task performance were then explored. RESULTS Prominent cortical thickness reductions were found in patients compared with controls at a 5% false discovery rate in a predominantly frontal and temporal pattern. Correlations of the left dorsolateral prefrontal cortex (DLPFC) with right prefrontal regions were significantly different in patients and controls. The difference remained significant in a subset of 20 first-episode patients. Participants with stronger frontal interhemispheric thickness correlations had poorer working memory performance. CONCLUSIONS We identified structural impairment in a left-right DLPFC circuit in patients with schizophrenia independent of illness stage or medication exposure. The relationship between left-right DLPFC thickness correlations and working memory performance implicates prefrontal interhemispheric circuit impairment as a vulnerability pathway for poor working memory performance. Our findings could guide the development of novel therapeutic interventions aimed at improving working memory performance in patients with schizophrenia.
Biological Psychiatry | 2017
Arash Nazeri; Benoit H. Mulsant; Tarek K. Rajji; Melissa L. Levesque; Jon Pipitone; Laura Stefanik; Saba Shahab; Tina Roostaei; Anne L. Wheeler; Sofia Chavez; Aristotle N. Voineskos
BACKGROUND Postmortem studies have demonstrated considerable dendritic pathologies among persons with schizophrenia and to some extent among those with bipolar I disorder. Modeling gray matter (GM) microstructural properties is now possible with a recently proposed diffusion-weighted magnetic resonance imaging modeling technique: neurite orientation dispersion and density imaging. This technique may bridge the gap between neuroimaging and histopathological findings. METHODS We performed an extended series of multishell diffusion-weighted imaging and other structural imaging series using 3T magnetic resonance imaging. Participants scanned included individuals with schizophrenia (n = 36), bipolar I disorder (n = 29), and healthy controls (n = 35). GM-based spatial statistics was used to compare neurite orientation dispersion and density imaging-driven microstructural measures (orientation dispersion index and neurite density index [NDI]) among groups and to assess their relationship with neurocognitive performance. We also investigated the accuracy of these measures in the prediction of group membership, and whether combining them with cortical thickness and white matter fractional anisotropy further improved accuracy. RESULTS The GM-NDI was significantly lower in temporal pole, anterior parahippocampal gyrus, and hippocampus of the schizophrenia patients than the healthy controls. The GM-NDI of patients with bipolar I disorder did not differ significantly from either schizophrenia patients or healthy controls, and it was intermediate between the two groups in the post hoc analysis. Regardless of diagnosis, higher performance in spatial working memory was significantly associated with higher GM-NDI mainly in the frontotemporal areas. The addition of GM-NDI to cortical thickness resulted in higher accuracy to predict group membership. CONCLUSIONS GM-NDI captures brain differences in the major psychoses that are not accessible with other structural magnetic resonance imaging methods. Given the strong association of GM-NDI with disease state and neurocognitive performance, its potential utility for biological subtyping should be further explored.
Journal of Biological Chemistry | 2013
Julie Turnbull; Erica Tiberia; Sandra Pereira; Xiaochu Zhao; Nela Pencea; Anne L. Wheeler; Wen Qin Yu; Alexander Ivovic; Taline Naranian; Nyrie Israelian; Arman Draginov; Mark Piliguian; Paul W. Frankland; Peixiang Wang; Cameron Ackerley; Adria Giacca; Berge A. Minassian
Background: Impaired activation of glycogen synthesis is a major component of insulin resistance. Results: We identified a protein, Epm2aip1, that associates with glycogen synthase (GS) and whose absence impairs allosteric activation of GS and causes hepatic insulin resistance. Conclusion: Epm2aip1 is a modulator of GS activity under insulin control. Significance: This study uncovers a novel component of glycogen regulation and hepatic insulin resistance. Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.