Stephanie H. Ameis
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie H. Ameis.
Cerebral Cortex | 2013
Budhachandra S. Khundrakpam; Andrew T. Reid; Jens Brauer; Felix Carbonell; John D. Lewis; Stephanie H. Ameis; Sherif Karama; Junki Lee; Zhang J. Chen; Samir Das; Alan C. Evans
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.
PLOS ONE | 2011
Stephanie H. Ameis; Jin Fan; Conrad Rockel; Aristotle N. Voineskos; Nancy J. Lobaugh; Latha Soorya; A. Ting Wang; Eric Hollander; Evdokia Anagnostou
Background Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD. Methods/Principal Findings DTI scans were acquired for 19 children and adolescents with ASD (∼8–18 years; mean 12.4±3.1) and 16 age and IQ matched controls (∼8–18 years; mean 12.3±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≤12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing. Conclusions/Significance Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder.
PLOS ONE | 2011
Aristotle N. Voineskos; Tristram A. Lett; Jason P. Lerch; Arun K. Tiwari; Stephanie H. Ameis; Tarek K. Rajji; Daniel J. Müller; Benoit H. Mulsant; James L. Kennedy
Background Structural variation in the neurexin-1 (NRXN1) gene increases risk for both autism spectrum disorders (ASD) and schizophrenia. However, the manner in which NRXN1 gene variation may be related to brain morphology to confer risk for ASD or schizophrenia is unknown. Method/Principal Findings 53 healthy individuals between 18–59 years of age were genotyped at 11 single nucleotide polymorphisms of the NRXN1 gene. All subjects received structural MRI scans, which were processed to determine cortical gray and white matter lobar volumes, and volumes of striatal and thalamic structures. Each subjects sensorimotor function was also assessed. The general linear model was used to calculate the influence of genetic variation on neural and cognitive phenotypes. Finally, in silico analysis was conducted to assess potential functional relevance of any polymorphisms associated with brain measures. A polymorphism located in the 3′ untranslated region of NRXN1 significantly influenced white matter volumes in whole brain and frontal lobes after correcting for total brain volume, age and multiple comparisons. Follow-up in silico analysis revealed that this SNP is a putative microRNA binding site that may be of functional significance in regulating NRXN1 expression. This variant also influenced sensorimotor performance, a neurocognitive function impaired in both ASD and schizophrenia. Conclusions Our findings demonstrate that the NRXN1 gene, a vulnerability gene for SCZ and ASD, influences brain structure and cognitive function susceptible in both disorders. In conjunction with our in silico results, our findings provide evidence for a neural and cognitive susceptibility mechanism by which the NRXN1 gene confers risk for both schizophrenia and ASD.
NeuroImage | 2009
Aristotle N. Voineskos; Lauren J. O'Donnell; Nancy J. Lobaugh; Douglas Markant; Stephanie H. Ameis; Marc Niethammer; Benoit H. Mulsant; Bruce G. Pollock; James L. Kennedy; Carl-Fredrik Westin; Martha Elizabeth Shenton
MR diffusion tensor imaging (DTI) can measure and visualize organization of white matter fibre tracts in vivo. DTI is a relatively new imaging technique, and new tools developed for quantifying fibre tracts require evaluation. The purpose of this study was to compare the reliability of a novel clustering approach with a multiple region of interest (MROI) approach in both healthy and disease (schizophrenia) populations. DTI images were acquired in 20 participants (n=10 patients with schizophrenia: 56+/-15 years; n=10 controls: 51+/-20 years) (1.5 T GE system) with diffusion gradients applied in 23 non-collinear directions, repeated three times. Whole brain seeding and creation of fibre tracts were then performed. Interrater reliability of the clustering approach, and the MROI approach, were each evaluated and the methods compared. There was high spatial (voxel-based) agreement within and between the clustering and MROI methods. Fractional anisotropy, trace, and radial and axial diffusivity values showed high intraclass correlation (p<0.001 for all tracts) for each approach. Differences in scalar indices of diffusion between the clustering and MROI approach were minimal. The excellent interrater reliability of the clustering method and high agreement with the MROI method, quantitatively and spatially, indicates that the clustering method can be used with confidence. The clustering method avoids biases of ROI drawing and placement, and, not limited by a priori predictions, may be a more robust and efficient way to identify and measure white matter tracts of interest.
American Journal of Psychiatry | 2017
Premika S.W. Boedhoe; Lianne Schmaal; Yoshinari Abe; Stephanie H. Ameis; Paul D. Arnold; Marcelo C. Batistuzzo; Francesco Benedetti; Jan C. Beucke; Irene Bollettini; Anushree Bose; Silvia Brem; Anna Calvo; Yuqi Cheng; Kang Ik K. Cho; Sara Dallaspezia; Damiaan Denys; Kate D. Fitzgerald; Jean-Paul Fouche; Mònica Giménez; Patricia Gruner; Gregory L. Hanna; D. P. Hibar; Marcelo Q. Hoexter; Hao Hu; Chaim Huyser; Keisuke Ikari; Neda Jahanshad; Norbert Kathmann; Christian Kaufmann; Kathrin Koch
OBJECTIVE Structural brain imaging studies in obsessive-compulsive disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in illness profile and developmental stage. To address these limitations, the authors conducted meta- and mega-analyses of data from OCD sites worldwide. METHOD T1 images from 1,830 OCD patients and 1,759 control subjects were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ between OCD patients and healthy subjects. The authors performed a meta-analysis on the mean of the left and right hemisphere measures of each subcortical structure, and they performed a mega-analysis by pooling these volumetric measurements from each site. The authors additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. RESULTS The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohens d=-0.13; % difference=-2.80) and larger pallidum volumes (d=0.16; % difference=3.16) compared with adult controls. Both effects were stronger in medicated patients compared with controls (d=-0.29, % difference=-4.18, and d=0.29, % difference=4.38, respectively). Unmedicated pediatric patients had significantly larger thalamic volumes (d=0.38, % difference=3.08) compared with pediatric controls. None of these findings were mediated by sample characteristics, such as mean age or scanning field strength. The mega-analysis yielded similar results. CONCLUSIONS The results indicate different patterns of subcortical abnormalities in pediatric and adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. These findings highlight the potential importance of neurodevelopmental alterations in OCD and suggest that further research on neuroplasticity in OCD may be useful.
Biological Psychiatry | 2014
Stephanie H. Ameis; Simon Ducharme; Matthew D. Albaugh; James J. Hudziak; Kelly N. Botteron; Claude Lepage; Lu Zhao; Budhachandra S. Khundrakpam; D. Louis Collins; Jason P. Lerch; Anne L. Wheeler; Russell Schachar; Alan C. Evans; Sherif Karama
BACKGROUND Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. METHODS Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. RESULTS Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. CONCLUSIONS Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples.
Frontiers in Psychiatry | 2012
Stephanie H. Ameis; Peter Szatmari
Autism Spectrum Disorder (ASD) refers to a group of heterogeneous neurodevelopmental disorders that are unified by impairments in reciprocal social communication and a pattern of inflexible behaviors. Recent genetic advances have resolved some of the complexity of the genetic architecture underlying ASD by identifying several genetic variants that contribute to the disorder. Different etiological pathways associated with ASD may converge through effects on common molecular mechanisms, such as synaptogenesis, neuronal motility, and axonal guidance. Recently, with more sophisticated techniques, neuroimaging, and neuropathological studies have provided some consistency of evidence that altered structure, activity, and connectivity within complex neural networks is present in ASD, compared to typically developing children. The imaging-genetics approach promises to help bridge the gap between genetic variation, resultant biological effects on the brain, and production of complex neuropsychiatric symptoms. Here, we review recent findings from the developing field of imaging-genetics applied to ASD. Studies to date have indicated that relevant risk genes are associated with alterations in circuits that mediate socio-emotional, visuo-spatial, and language processing. Longitudinal studies ideally focused on early development, in conjunction with investigation for gene–gene, and gene–environment interactions may move the promise of imaging-genetics in ASD closer to the clinical domain.
International Journal of Developmental Neuroscience | 2016
Denise DuBois; Stephanie H. Ameis; Meng-Chuan Lai; Manuel F. Casanova; Pushpal Desarkar
This review article summarizes original scientific research published to date on interoception in individuals with Autism Spectrum Disorder (ASD). Sensory processing has been shown to be atypical in ASD, yet physiological processing and subjective experience of internal sensation processing, namely interoception, has not been reported sufficiently in research or clinical settings.
Neuroscience & Biobehavioral Reviews | 2015
Xiao Ou; David E. Crane; Bradley J. MacIntosh; L. Trevor Young; Paul D. Arnold; Stephanie H. Ameis; Benjamin I. Goldstein
Recently, multiple genome-wide association studies have identified a genetic polymorphism (CACNA1C rs1006737) that appears to confer susceptibility for BD. This article aims to summarize the existing literature regarding the impact of rs1006737 on functional and structural neuroimaging intermediate phenotypes. Twenty eight articles, representing 2486 healthy participants, 369 patients with BD and 104 healthy first-degree relatives of patients with BD, are incorporated. Multiple studies have demonstrated structural differences, functional differences associated with emotion-related and frontal-executive tasks, and/or differences in behavioral task performance in risk allele carriers (AA or AG). Results comparing participants with BD to health controls are generally less pronounced than within-group genetic comparisons. The review concludes with an integration of how cardiovascular comorbidity may be a relevant mediator of the observed findings, and proposes future directions toward optimized therapeutic use of calcium channel blockers in BD.
Acta Neuropsychiatrica | 2013
Stephanie H. Ameis; Jin Fan; Conrad Rockel; Latha Soorya; Wang At; Evdokia Anagnostou
Objective Here, we examined the cingulum bundle, a long-range white matter tract mediating dorsal limbic connectivity, using diffusion tensor imaging (DTI) tractography, in children and adolescents with autism spectrum disorder (ASD) versus controls. We hypothesised that cingulum bundle microstructure would be altered in ASD, based on evidence implicating abnormal white matter connectivity in this disorder. Methods DTI data were acquired for 19 ASD participants (IQ ⩾ 70; 7–18 years; mean = 12.4 ± 3.1) and 16 age-matched controls (7–18 years; mean = 12.3 ± 3.6) on a 3 T magnetic resonance imaging system. Deterministic tractography was used to isolate the cingulum bundle. Left and right cingulum bundles were examined for differences in several DTI metrics in ASD children/adolescents versus controls, including: fractional anisotropy (FA), mean, axial, and radial diffusivity. Results Significant age × group interaction effects were found for all DTI metrics (mean diffusivity: F1,28 = 9.5, p = 0.005, radial diffusivity: F1,28 = 7.8, p = 0.009, axial diffusivity: F1,28 = 5.2, p = 0.03, FA: F1,28 = 4.4, p = 0.04). Interaction effects were driven by increases in cingulum bundle diffusivity (mean, radial, and axial diffusivity), and decreased FA, in younger ASD participants within our sample versus controls. Conclusion Our results point to immature microstructural organisation of the cingulum bundle in ASD, particularly during the early years of life, with implications for limbic network synchronisation and complex socio-emotional performance.