Anne-Lise Paradis
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Lise Paradis.
Human Brain Mapping | 2001
Alexandre Andrade; Ferath Kherif; Jean-François Mangin; Keith J. Worsley; Anne-Lise Paradis; Olivier Simon; Stanislas Dehaene; Denis Le Bihan; Jean-Baptiste Poline
A methodology for fMRI data analysis confined to the cortex, Cortical Surface Mapping (CSM), is presented. CSM retains the flexibility of the General Linear Model based estimation, but the procedures involved are adapted to operate on the cortical surface, while avoiding to resort to explicit flattening. The methodology is tested by means of simulations and application to a real fMRI protocol. The results are compared with those obtained with a standard, volume‐oriented approach (SPM), and it is shown that CSM leads to local differences in sensitivity, with generally higher sensitivity for CSM in two of the three subjects studied. The discussion provided is focused on the benefits of the introduction of anatomical information in fMRI data analysis, and the relevance of CSM as a step toward this goal. Hum. Brain Mapping 12:79–93, 2001.
Cerebral Cortex | 2015
Kinga Iglói; Christian F. Doeller; Anne-Lise Paradis; Karim Benchenane; Alain Berthoz; Neil Burgess; Laure Rondi-Reig
To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task.
Frontiers in Systems Neuroscience | 2014
Laure Rondi-Reig; Anne-Lise Paradis; Julie M. Lefort; Benedicte M. Babayan; Christine Tobin
The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation.
Journal of Vision | 2012
Anne Caclin; Anne-Lise Paradis; Cédric Lamirel; Bertrand Thirion; Eric Artiges; Jean-Baptiste Poline; Jean Lorenceau
Visual shape and motion information, processed in distinct brain regions, should be combined to elicit a unitary coherent percept of an object in motion. In an fMRI study, we identified brain regions underlying the perceptual binding of motion and shape independently of the features-contrast, motion, and shape-used to design the moving displays. These displays alternately elicited a bound (moving diamond) or an unbound (disconnected moving segments) percept, and were either physically unchanging yet perceptually bistable or physically changing over time. The joint analysis of the blood-oxygen-level-dependent (BOLD) signals recorded during bound or unbound perception with these different stimuli revealed a network comprising the occipital lobe and ventral and dorsal visual regions. Bound percepts correlated with in-phase BOLD increases within the occipital lobe and a ventral area and decreased activity in a dorsal area, while unbound percepts elicited moderate BOLD modulations in these regions. This network was similarly activated by bistable unchanging displays and by displays periodically changing over time. The uncovered interplay between the two regions is proposed to reflect a generic binding process that dynamically weights the perceptual evidence supporting the different shape and motion interpretations according to the reliability of the neural activity in these regions.
Frontiers in Human Neuroscience | 2012
Ying Liu; Anne-Lise Paradis; Lydia Yahia-Cherif; Catherine Tallon-Baudry
There is converging evidence that electrophysiological responses over posterior cortical regions in the 200–300 ms range distinguish between physically identical stimuli that reach consciousness or remain unseen. Here, we attempt at determining the sources of this awareness-related activity using magneto-encephalographic (MEG). Fourteen subjects were presented with faint colored gratings at threshold for contrast and reported on each trial whether the grating was seen or unseen. Subjects were primed with a color cue that could be congruent or incongruent with the color of the grating, to probe to what extent two co-localized features (color and orientation) would be bound in consciousness. The contrast between neural responses to seen and unseen physically identical gratings revealed a sustained posterior difference between 190 and 350 ms, thereby replicating prior studies. We further show that the main sources of the awareness-related activity were localized bilaterally on the lateral convexity of the occipito-temporal region, in the Lateral Occipital (LO) complex, as well as in the right posterior infero-temporal region. No activity differentiating seen and unseen trials could be observed in frontal or parietal regions in this latency range, even at lower threshold. Color congruency did not improve gratings detection, and the awareness-related activity was independent from color congruency. However, at the neural level, color congruency was processed differently in grating-present and grating-absent trials. The pattern of results suggests the existence of a neural process of color congruency engaging left parietal regions that is affected by the mere presence of another feature, whether this feature reaches consciousness or not. Altogether, our results reveal an occipital source of visual awareness insensitive to color congruency, and a simultaneous parietal source not engaged in visual awareness, but sensitive to the manipulation of co-localized features.
PLOS ONE | 2014
Charles Aissani; Jacques Martinerie; Lydia Yahia-Cherif; Anne-Lise Paradis; Jean Lorenceau
Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajous figure (bound percept) or as pairs of bars oscillating independently along cardinal axes (unbound percept). We found that beta (15–25 Hz), but not gamma (55–85 Hz) oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.
Frontiers in Human Neuroscience | 2012
Anne-Lise Paradis; Shasha Morel; Peggy Seriès; Jean Lorenceau
Waves of activity following a focal stimulation are reliably observed to spread across the cortical tissue. The origin of these waves remains unclear and the underlying mechanisms and function are still debated. In this study, we ask whether waves of activity modulate the magnetoencephalography (MEG) signals recorded in humans during visual stimulation with Gabor patches sequentially flashed along a vertical path, eliciting a perception of vertical apparent motion. Building upon the functional properties of long-rang horizontal connections, proposed to contribute to spreading activity, we specifically probe the amplitude and latency of MEG responses as a function of Gabor contrast and orientation. The results indicate that in the left hemisphere the response amplitude is enhanced and the half height response latency is shortened for co-aligned Gabor as compared to misaligned Gabor patches at a low but not at a high contrast. Building upon these findings, we develop a biologically plausible computational model that performs a “spike time alignment” of the responses to elongated contours with varying contrast, endowing them with a phase advance relative to misaligned contours.
Scientific Reports | 2017
Benedicte M. Babayan; Aurélie Watilliaux; Guillaume Viejo; Anne-Lise Paradis; Benoît Girard; Laure Rondi-Reig
How do we translate self-motion into goal-directed actions? Here we investigate the cognitive architecture underlying self-motion processing during exploration and goal-directed behaviour. The task, performed in an environment with limited and ambiguous external landmarks, constrained mice to use self-motion based information for sequence-based navigation. The post-behavioural analysis combined brain network characterization based on c-Fos imaging and graph theory analysis as well as computational modelling of the learning process. The study revealed a widespread network centred around the cerebral cortex and basal ganglia during the exploration phase, while a network dominated by hippocampal and cerebellar activity appeared to sustain sequence-based navigation. The learning process could be modelled by an algorithm combining memory of past actions and model-free reinforcement learning, which parameters pointed toward a central role of hippocampal and cerebellar structures for learning to translate self-motion into a sequence of goal-directed actions.
Journal of Vision | 2011
Frederic Benmussa; Charles Aissani; Anne-Lise Paradis; Jean Lorenceau
This study explores the extent to which a display changing periodically in perceptual interpretation through smooth periodic physical changes-an inducer-is able to elicit perceptual switches in an intrinsically bistable distant probe display. Four experiments are designed to examine the coupling strength and bistable dynamics with displays of varying degree of ambiguity, similarity, and symmetry-in motion characteristics-as a function of their locations in visual space. The results show that periodic fluctuations of a remote inducer influence a bistable probe and regulate its dynamics through coupling. Coupling strength mainly depends on the relative locations of the probe display and the contextual inducer in the visual field, with stronger coupling when both displays are symmetrical around the vertical meridian and weaker coupling otherwise. Smaller effects of common fate and symmetry are also found. Altogether, the results suggest that long-range interhemispheric connections, presumably involving the corpus callosum, are able to synchronize perceptual transitions across the vertical meridian. If true, bistable dynamics may provide a behavioral method to probe interhemispheric connectivity in behaving human. Consequences of these findings for studies using stimuli symmetrical around the vertical meridian are evaluated.
Journal of Vision | 2008
A. Miskiewicz; Stéphane Buffat; Anne-Lise Paradis; Jean Lorenceau
This study uses a rapid-serial-visual-presentation (RSVP) paradigm to test the extent to which shape and motion direction can be independently accessed and processed during the perception of structure-from-motion (SFM) stimuli. Subjects reported the number of occurrences of shape or motion direction during RSVP sequences of 3D-SFM stimuli. Overall, performance was better for motion than shape. In the motion task, observers were less accurate when the motion direction was repeated revealing a repetition blindness (RB) effect. In addition, the repetition of shape, although irrelevant to the motion task, resulted in increased performance, without change in RB rate. In contrast, there was no RB at the group level in the shape task and the repetition of the irrelevant motion direction had no effect on the performance. A closer look at the data showed that observers fall in two statistically distinct groups for the shape task. Some observers (N = 6) show a repetition advantage (RA) while the others (N = 5) show a repetition blindness (RB) effect. No behavioral differences between groups could be found for the motion task. The implications of these results for models of SFM processing are discussed in the light of the type/token theory (N. Kanwisher, 2001).