Roberto Toro
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Toro.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Stephen M. Smith; Peter T. Fox; Karla L. Miller; David C. Glahn; P. Mickle Fox; Clare E. Mackay; Nicola Filippini; Kate E. Watkins; Roberto Toro; Angela R. Laird; Christian F. Beckmann
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.”
Nature Genetics | 2012
Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
Nature | 2012
Michael J. Schmeisser; Elodie Ey; Stephanie Wegener; Juergen Bockmann; A. Vanessa Stempel; Angelika Kuebler; Anna-Lena Janssen; Patrick T Udvardi; Ehab Shiban; Christina Spilker; Detlef Balschun; Boris V. Skryabin; Susanne tom Dieck; Karl-Heinz Smalla; Dirk Montag; Claire S. Leblond; Philippe Faure; Nicolas Torquet; Anne-Marie Le Sourd; Roberto Toro; Andreas M. Grabrucker; Sarah A. Shoichet; Dietmar Schmitz; Michael R. Kreutz; Thomas Bourgeron; Eckart D. Gundelfinger; Tobias M. Boeckers
Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2−/− mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2−/− mutants with ProSAP2/Shank3αβ−/− mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.
PLOS Genetics | 2012
Claire S. Leblond; Jutta Heinrich; Richard Delorme; Christian Proepper; Catalina Betancur; Guillaume Huguet; Marina Konyukh; Pauline Chaste; Elodie Ey; Maria Råstam; Henrik Anckarsäter; Gudrun Nygren; I. Carina Gillberg; Jonas Melke; Roberto Toro; Béatrice Regnault; Fabien Fauchereau; Oriane Mercati; Nathalie Lemière; David Skuse; Martin Poot; Richard Holt; Anthony P. Monaco; Irma Järvelä; Katri Kantojärvi; Raija Vanhala; Sarah Curran; David A. Collier; Patrick Bolton; Andreas G. Chiocchetti
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
Trends in Genetics | 2010
Roberto Toro; Marina Konyukh; Richard Delorme; Claire S. Leblond; Pauline Chaste; Fabien Fauchereau; Mary Coleman; Marion Leboyer; Christopher Gillberg; Thomas Bourgeron
Autism spectrum disorders (ASD) are characterized by impairments in reciprocal social communication, and repetitive, stereotyped verbal and non-verbal behaviors. Genetic studies have provided a relatively large number of genes that constitute a comprehensive framework to better understand this complex and heterogeneous syndrome. Based on the most robust findings, three observations can be made. First, genetic contributions to ASD are highly heterogeneous and most probably involve a combination of alleles with low and high penetrance. Second, the majority of the mutations apparently affect a single allele, suggesting a key role for gene dosage in susceptibility to ASD. Finally, the broad expression and function of the causative genes suggest that alteration of synaptic homeostasis could be a common biological process associated with ASD. Understanding the mechanisms that regulate synaptic homeostasis should shed new light on the causes of ASD and could provide a means to modulate the severity of the symptoms.
NeuroImage | 2012
Clare Kelly; Roberto Toro; Adriana Di Martino; Christine L. Cox; Pierre Bellec; F. Xavier Castellanos; Michael P. Milham
Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations.
PLOS Genetics | 2014
Claire S. Leblond; Caroline Nava; Anne Polge; Julie Gauthier; Guillaume Huguet; Serge Lumbroso; Fabienne Giuliano; Coline Stordeur; Christel Depienne; Kevin Mouzat; Dalila Pinto; Jennifer L. Howe; Nathalie Lemière; Christelle M. Durand; Jessica Guibert; Elodie Ey; Roberto Toro; Hugo Peyre; Alexandre Mathieu; Frédérique Amsellem; Maria Råstam; I. Carina Gillberg; Gudrun Rappold; Richard Holt; Anthony P. Monaco; Elena Maestrini; Pilar Galan; Delphine Héron; Aurélia Jacquette; Alexandra Afenjar
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.
Cerebral Cortex | 2008
Roberto Toro; Michel Perron; Bruce Pike; Louis Richer; Suzanne Veillette; Zdenka Pausova; Tomáš Paus
During evolution, the mammalian cerebral cortex has expanded disproportionately to brain volume. As a consequence, most mammals with large brains have profusely convoluted cortices. The human cortex is a good example of this trend, however, given the large variability in human brain size, it is not clear how cortical folding varies from the smallest to the largest brains. We analyzed cortical folding in a large cohort of human subjects exhibiting a 1.7-fold variation in brain volume. We show that the same disproportionate increase of cortical surface relative to brain volume observed across species can be also observed across human brains: the largest brains can have up to 20% more surface than a scaled-up small brain. We introduce next a novel local measure of cortical folding, and we show that the correlation between cortical folding and size varies along a rostro-caudal gradient, being especially significant in the prefrontal cortex. The expansion of the cerebral cortex, and in particular that of its prefrontal region, is a major evolutionary landmark in the emergence of human cognition. Our results suggest that this may be, at least in part, a natural outcome of increasing brain size.
Human Brain Mapping | 2007
Zdenka Pausova; Tomáš Paus; Michal Abrahamowicz; Jason B. Almerigi; Nadine Arbour; Manon Bernard; Daniel Gaudet; Petr Hanzalek; Pavel Hamet; Alan C. Evans; Michael S. Kramer; Luc Laberge; Susan M. Leal; Gabriel Leonard; Jackie Lerner; Richard M. Lerner; Jean Mathieu; Michel Perron; Bruce Pike; Alain Pitiot; Louis Richer; Jean R. Séguin; Catriona Syme; Roberto Toro; Richard E. Tremblay; Suzanne Veillette; Kate E. Watkins
The search for genes of complex traits is aided by the availability of multiple quantitative phenotypes collected in geographically isolated populations. Here we provide rationale for a large‐scale study of gene‐environment interactions influencing brain and behavior and cardiovascular and metabolic health in adolescence, namely the Saguenay Youth Study (SYS). The SYS is a retrospective study of long‐term consequences of prenatal exposure to maternal cigarette smoking (PEMCS) in which multiple quantitative phenotypes are acquired over five sessions (telephone interview, home, hospital, laboratory, and school). To facilitate the search for genes that modify an individuals response to an in utero environment (i.e. PEMCS), the study is family‐based (adolescent sibships) and is carried out in a relatively geographically isolated population of the Saguenay Lac‐Saint‐Jean (SLSJ) region in Quebec, Canada. DNA is acquired in both biological parents and in adolescent siblings. A genome‐wide scan will be carried out with sib‐pair linkage analyses, and fine mapping of identified loci will be done with family‐based association analyses. Adolescent sibships (12–18 years of age; two or more siblings per family) are recruited in high schools throughout the SLSJ region; only children of French‐Canadian origin are included. Based on a telephone interview, potential participants are classified as exposed or nonexposed prenatally to maternal cigarette smoking; the two groups are matched for the level of maternal education and the attended school. A total of 500 adolescent participants in each group will be recruited and phenotyped. The following types of datasets are collected in all adolescent participants: (1) magnetic resonance images of brain, abdominal fat, and kidneys, (2) standardized and computer‐based neuropsychological tests, (3) hospital‐based cardiovascular, body‐composition and metabolic assessments, and (4) questionnaire‐derived measures (e.g. life habits such as eating and physical activity; drug, alcohol use and delinquency; psychiatric symptoms; personality; home and school environment; academic and vocational attitudes). Parents complete a medical questionnaire, home‐environment questionnaire, a handedness questionnaire, and a questionnaire about their current alcohol and drug use, depression, anxiety, and current and past antisocial behavior. To date, we have fully phenotyped a total of 408 adolescent participants. Here we provide the description of the SYS and, using the initial sample, we present information on ascertainment, demographics of the exposed and nonexposed adolescents and their parents, and the initial MRI‐based assessment of familiality in the brain size and the volumes of grey and white matter. Hum Brain Mapp 2007.
Neuropsychopharmacology | 2008
Roberto Toro; Gabriel Leonard; Jacqueline V. Lerner; Richard M. Lerner; Michel Perron; G. Bruce Pike; Louis Richer; Suzanne Veillette; Zdenka Pausova; Tomáš Paus
Smoking during pregnancy is associated with long-term consequences on offspring behavior. We measured thickness of the cerebral cortex using magnetic resonance images obtained in 155 adolescents exposed in utero to maternal smoking and compared them with 159 non-exposed subjects matched by maternal education. Orbitofrontal, middle frontal, and parahippocampal cortices were thinner in exposed, as compared with non-exposed, individuals; these differences were more pronounced in female adolescents. In exposed females, the thickness of the orbitofrontal cortex correlated negatively with a self-rated assessment of caring, one of the components of a model of positive youth development. These findings provide evidence of the long-term impact of prenatal environment on a neural substrate of cognition and social behavior.