Anne Listrat
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Listrat.
The FASEB Journal | 2005
Isabelle Piec; Anne Listrat; Josette Alliot; Christophe Chambon; Richard G. Taylor; Daniel Béchet
To identify the mechanisms underlying muscle aging, we have undertaken a high‐resolution differential proteomic analysis of gastrocnemius muscle in young adults, mature adults, and old LOU/c/jall rats. Two‐dimensional gel electrophoresis and subsequent MALDI‐ToF mass spectrometry analyses led to the identification of 40 differentially expressed proteins. Strikingly, most differences characterized old (30‐month) animals, whereas young (7‐month) and mature (18‐month) adults exhibited similar patterns of expression. Important modifications in contractile (actin, myosin light‐chains, troponins‐T) and cytoskeletal (desmin, tubulin) proteins, and in essential regulatory proteins (gelsolin, myosin binding proteins, CapZ‐β, P23), likely account for dysfunctions in old muscle force generation and speed of contraction. Other features support decreases in cytosolic (triose‐phosphate isomerase, enolase, glycerol‐3‐P dehydrogenase, creatine kinase) and mitochondrial (isocitrate dehydrogenase, cytochrome‐c oxidase) energy metabolisms. Muscle aging is often associated with increased oxidative stress. Accordingly, we observed differential regulation of molecular chaperones (hsp20, hsp27, reticuloplasmin ER60) and of proteins implicated in reactive aldehyde detoxification (aldehyde dehydrogenase, glutathione transferase, glyoxalase). We further noticed up‐regulation of proteins involved in transcriptional elongation (RNA capping protein) and RNA‐editing (Apobec2). Most of these proteins were previously unrecognized as differentially expressed in old muscles, and they represent novel starting points for elucidating the mechanisms of muscle aging.
Cellular Microbiology | 2012
Caroline Chagnot; Anne Listrat; Thierry Astruc; Mickaël Desvaux
The extracellular matrix (ECM) is present within all animal tissues and organs. Actually, it surrounds the eukaryotic cells composing the four basic tissue types, i.e. epithelial, muscle, nerve and connective. ECM does not solely refer to connective tissue but composes all tissues where its composition, structure and organization vary from one tissue to another. Constituted of the four main fibrous proteins, i.e. collagen, fibronectin, laminin and elastin, ECM components form a highly structured and functional network via specific interactions. From the basement membrane to interstitial matrix, further heterogeneity exists in the organization of the ECM in various tissues and organs also depending on their physiological state. Back to a molecular level, bacterial proteins represent the most significant part of the microbial surface components recognizing adhesive matrix molecules (MSCRAMM). These cell surface proteins are secreted and localized differently in monoderm and diderm–LPS bacteria. While one collagen‐binding domain (CBD) and different fibronectin‐binding domains (FBD1 to 8) have been registered in databases, much remains to be learned on specific binding to other ECM proteins via single or supramolecular protein structures. Besides theinteraction of bacterial proteins with individual ECM components, this review aims at stressing the importance of fully considering the ECM at supramolecular, cellular, tissue and organ levels. This conceptual view should not be overlooked to rigorously comprehend the physiology of bacterial interaction from commensal to pathogenic species.
American Journal of Physiology-endocrinology and Metabolism | 2008
Emilie Vazeille; Audrey Codran; Agnès Claustre; Julien Averous; Anne Listrat; Daniel Béchet; Daniel Taillandier; Dominique Dardevet; Didier Attaix; Lydie Combaret
Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms underlying muscle atrophy and recovery following immobilization by studying the regulation of the mitochondria-associated apoptotic and the ubiquitin-proteasome-dependent proteolytic pathways. Animals were subjected to hindlimb immobilization for 4-8 days (I4 to I8) and allowed to recover after cast removal for 10-40 days (R10 to R40). Soleus and gastrocnemius muscles atrophied from I4 to I8 to a greater extent than extensor digitorum longus and tibialis anterior muscles. Gastrocnemius muscle atrophy was first stabilized at R10 before being progressively reduced until R40. Polyubiquitinated proteins accumulated from I4, whereas the increased ubiquitination rates and chymotrypsin-like activity of the proteasome were detectable from I6 to I8. Apoptosome and caspase-3 or -9 activities increased at I6 and I8, respectively. The ubiquitin-proteasome-dependent pathway was normalized early when muscle stops to atrophy (R10). By contrast, the mitochondria-associated apoptotic pathway was first downregulated below basal levels when muscle started to recover at R15 and completely normalized at R20. Myf 5 protein levels decreased from I4 to I8 and were normalized at R10. Altogether, our results suggest a two-stage process in which the ubiquitin-proteasome pathway is rapidly up- and downregulated when muscle atrophies and recovers, respectively, whereas apoptotic processes may be involved in the late stages of atrophy and recovery.
Histochemical Journal | 2000
Anne Listrat; Claire Lethias; J-F Hocquette; Gilles Renand; François Ménissier; Y. Geay; Brigitte Picard
The ontogenesis of total collagen and of different collagen types was studied in four muscle types from genetically different cattle. Hydroxyproline content was 1.2-fold higher in muscles from cross-bred foetuses with normal muscle growth compared to those of the other genetic types (pure bred with different growth rates, double-muscled breed). A similar tendency was observed for type III collagen content. In all muscles of each animal studied, type XII and XIV collagens were colocated in perimysium. Immunolabelling obtained for type XII collagen was higher during foetal life than after birth, while for type XIV collagen, the opposite result was obtained. Whatever the muscle studied, but especially in semitendinosus muscle, during the foetal and the post-natal period until 15 months of age, immunolabelling with antibody anti-type XIV collagen tended to be more intense in muscles of animals from fathers selected for a low muscle growth capacity compared to those from fathers selected for a high muscle growth capacity. In conclusion, this study shows, that during foetal life, selection according to muscle growth capacity has no significant effect on the contents of total hydroxyproline or type III collagen, but minor effects on collagen localization.
Meat Science | 1999
Anne Listrat; N. Rakadjiyski; Catherine Jurie; Brigitte Picard; C. Touraille; Y. Geay
The effect of the type of diet (hay vs grass silage) on body composition and characteristics and palatability of semitendinosus (ST) and longissimus thoracis (LT) muscles of 16 month old Salers bulls fed at the same energy levels were studied. Animals fed hay had a lower daily weight gain and carcass weight and were leaner. There were no significant differences in the proportions of fibre types in the ST or LT due to diet. ST muscle of hay fed animals had a lower oxidative metabolism, but contained similar amounts of total and type I collagen and greater amounts, and proportions of soluble collagen and of type III collagen, than those of animals fed grass silage. ST muscles of hay-fed animals were more tender than those of silage-fed animals.
The Scientific World Journal | 2016
Anne Listrat; Bénédicte Lebret; Isabelle Louveau; Thierry Astruc; Muriel Bonnet; Louis Lefaucheur; Brigitte Picard; Jérôme Bugeon
Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality.
Meat Science | 2005
Karine Sudre; Isabelle Cassar-Malek; Anne Listrat; Yasuko Ueda; Christine Leroux; Catherine Jurie; Charles Auffray; Gilles Renand; Patrice Martin; Jean-François Hocquette
This work aimed to investigate the consequences of muscle growth selection on muscle characteristics. An oxidative muscle (Rectus abdominis, RA) and a glycolytic one (Semitendinosus, ST) were studied in two groups of six extreme young Charolais bulls of high or low muscle growth. Mitochondrial activity was lower in muscles of bulls with high muscle growth. Transcriptomic studies allowed the identification of putatively differentially expressed genes. The differential expression between genetic types of two genes in RA (a heat shock protein and a thyroid receptor interacting protein) and of seven genes in ST (including LEU5, tropomyosin 2, and sarcosin) was confirmed by different statistical approaches or Northern blot analysis, as well as the differential expression of five genes (including PSMD4 and DPM synthase) between RA and ST. Both biochemical and transcriptomic results indicate that selection on muscle growth potential is associated with reduced slow-oxidative muscle characteristics. Further studies are required to understand the physiological importance of genes whose expression is changed by selection.
Meat Science | 2007
Catherine Jurie; Brigitte Picard; Jean-François Hocquette; Eric Dransfield; D. Micol; Anne Listrat
Muscle characteristics and sensory rating of meat were determined in M. longissimus thoracis (LT), M. semimembranosus (SM), M. semitendinosus (ST) and M. triceps brachii (TB) from seven Holstein (HO, dairy breed) and six Salers (SA, beef breed) cull cows slaughtered at 6-7 years of age at the same fat score. Significant differences (P<0.001) among muscle types were observed: ST was the more glycolytic and TB the more oxidative; total collagen: ST>SM=TB>LT; initial and overall tenderness: LT>TB=SM>ST, juiciness: TB>LT=SM>ST. Flavour differed only between breeds: HO>SA (P<0.01). Three tenderness classes (high, intermediate, low) were determined from scores for sensory overall tenderness for all 52 meats: the lower total and insoluble collagen contents, the more oxidative metabolism, the more tender was the meat. Muscle type, and not breed explained most of the variability of meat quality from dairy and beef cull cows slaughtered at the same age and fat score.
Aging Cell | 2014
Huijuan Wang; Anne Listrat; Bruno Meunier; Cécile Coudy-Gandilhon; Lydie Combaret; Daniel Taillandier; Cécile Polge; Didier Attaix; Claire Lethias; Kijoon Lee; Kheng Lim Goh; Daniel Béchet
The age‐related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein‐7 (Pax7) or laminin‐2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age‐related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre‐associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age‐dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing.
Animal Science | 2005
Catherine Jurie; J.-F. Martin; Anne Listrat; R. Jailler; J. Culioli; Brigitte Picard
The effects of age and breed on growth parameters, carcass and muscle characteristics of bulls, slaughtered at 15, 19 and 24 months of age, were analysed in four French breeds: Aubrac (AU), Charolais (CH), Limousin (LI), and Salers (SA). Muscle characteristics were determined in three muscles: longissimus thoracis (LT), semitendinosus (ST) and triceps brachii (TB). They included: (1) the % frequency, cross-sectional area and % area of fibre types, which were classified according to the contractile nature of the fibres and their metabolic properties (SO slow oxidative, FOG fast oxidative glycolytic and FG fast glycolytic); (2) the isocitrate dehydrogenase (ICDH) and lactate dehydrogenase (LDH) activities, representative of oxidative and glycolytic metabolism respectively; and (3) the total and insoluble collagen contents. In the four breeds, the average daily gain and the food efficiency decreased with age ( P P P P P P P P P So carcass characteristics were modified between 15 and 24 months, and muscle characteristics were especially modified from 19 months of age. In addition, differences in slaughter data between breeds were clear and consistent, whereas those of muscle characteristics were few and not consistent.