Anne Lotz
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Lotz.
Annals of Occupational Hygiene | 2012
Martin Lehnert; Beate Pesch; Anne Lotz; Johannes Pelzer; Benjamin Kendzia; Katarzyna Gawrych; Evelyn Heinze; Rainer Van Gelder; Ewald Punkenburg; Tobias Weiss; Markus Mattenklott; Jens-Uwe Hahn; Carsten Möhlmann; Markus Berges; Andrea Hartwig; Thomas Brüning
This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements <LOD from the regression equation with manganese to estimate determinants of the exposure to welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.
Journal of Exposure Science and Environmental Epidemiology | 2012
Beate Pesch; Tobias Weiss; Benjamin Kendzia; Jana Henry; Martin Lehnert; Anne Lotz; Evelyn Heinze; Heiko U. Käfferlein; Rainer Van Gelder; Markus Berges; Jens-Uwe Hahn; Markus Mattenklott; Ewald Punkenburg; Andrea Hartwig; Thomas Brüning
We investigated airborne and internal exposure to manganese (Mn) and iron (Fe) among welders. Personal sampling of welding fumes was carried out in 241 welders during a shift. Metals were determined by inductively coupled plasma mass spectrometry. Mn in blood (MnB) was analyzed by graphite furnace atom absorption spectrometry. Determinants of exposure levels were estimated with multiple regression models. Respirable Mn was measured with a median of 62 (inter-quartile range (IQR) 8.4–320) μg/m3 and correlated with Fe (r=0.92, 95% CI 0.90–0.94). Inhalable Mn was measured with similar concentrations (IQR 10–340 μg/m3). About 70% of the variance of Mn and Fe could be explained, mainly by the welding process. Ventilation decreased exposure to Fe and Mn significantly. Median concentrations of MnB and serum ferritin (SF) were 10.30 μg/l (IQR 8.33–13.15 μg/l) and 131 μg/l (IQR 76–240 μg/l), respectively. Few welders were presented with low iron stores, and MnB and SF were not correlated (r=0.07, 95% CI −0.05 to 0.20). Regression models revealed a significant association of the parent metal with MnB and SF, but a low fraction of variance was explained by exposure-related factors. Mn is mainly respirable in welding fumes. Airborne Mn and Fe influenced MnB and SF, respectively, in welders. This indicates an effect on the biological regulation of both metals. Mn and Fe were strongly correlated, whereas MnB and SF were not, likely due to higher iron stores among welders.
International Journal of Hygiene and Environmental Health | 2013
Tobias Weiss; Beate Pesch; Anne Lotz; Eleonore Gutwinski; Rainer Van Gelder; Ewald Punkenburg; Benjamin Kendzia; Katarzyna Gawrych; Martin Lehnert; Evelyn Heinze; Andrea Hartwig; Heiko U. Käfferlein; Jens-Uwe Hahn; Thomas Brüning
The objective of this analysis was to investigate levels and determinants of exposure to airborne and urinary chromium (Cr, CrU) and nickel (Ni, NiU) among 241 welders. Respirable and inhalable welding fume was collected during a shift, and the metal content was determined using inductively coupled plasma mass spectrometry. In post-shift urine, CrU and NiU were measured by means of graphite furnace atom absorption spectrometry, with resulting concentrations varying across a wide range. Due to a large fraction below the limits of quantitation we applied multiple imputations to the log-transformed exposure variables for the analysis of the data. Respirable Cr and Ni were about half of the concentrations of inhalable Cr and Ni, respectively. CrU and NiU were determined with medians of 1.2 μg/L (interquartile range <1.00; 3.61) and 2.9 μg/L (interquartile range <1.50; 5.97). Furthermore, Cr and Ni correlated in respirable welding fume (r=0.79, 95% CI 0.74-0.85) and urine (r=0.55, 95% CI 0.44-0.65). Regression models identified exposure-modulating variables in form of multiplicative factors and revealed slightly better model fits for Cr (R(2) respirable Cr 48%, CrU 55%) than for Ni (R(2) respirable Ni 42%, NiU 38%). The air concentrations were mainly predicted by the metal content in electrodes or base material in addition to the welding technique. Respirable Cr and Ni were good predictors for CrU and NiU, respectively. Exposure was higher when welding was performed in confined spaces or with inefficient ventilation, and lower in urine when respirators were used. In conclusion, statistical modelling allowed the evaluation of determinants of internal and external exposure to Cr and Ni in welders. Welding parameters were stronger predictors than workplace conditions. Airborne exposure was lowest inside respirators with supply of purified air.
NeuroImage: Clinical | 2014
Tobias Schmidt-Wilcke; Patricia Cagnoli; Page Wang; Thomas Schultz; Anne Lotz; William J. McCune; Pia C. Sundgren
Purpose Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease that can affect the central nervous system. Neuropsychiatric symptoms are found in 25–70% of patients. Using diffusion tensor imaging (DTI) various studies have reported changes in white matter integrity in SLE patients with neuropsychiatric symptoms (NPSLE patients). The purpose of this study was to investigate, if regional changes in white matter integrity can also be detected in SLE patients without neuropsychiatric symptoms (non-NPSLE patients). Methods Applying DTI and tract based spatial statistics (TBSS) we investigated 19 NPSLE patients, 19 non-NPSLE and 18 healthy controls. Groups were matched for age and sex. Image pre-processing was performed using FSL, following the TBSS pipeline (eddy current correction, estimation of fractional anisotropy (FA), normalization, skeletonization of the group mean FA image). A general linear model with threshold-free cluster enhancement was used to assess significant differences between the three groups. Results Statistical analyses revealed several regions of decreased prefrontal white matter integrity (decreased FA) in both groups of SLE patients. The changes found in the non-NPSLE patients (as compared to healthy controls) overlapped with those in the NPSLE patients, but were not as pronounced. Conclusions Our data suggest that changes in regional white matter integrity, in terms of a decrease in FA, are present not only in NPSLE patients, but also in non-NPSLE patients, though to a lesser degree. We also demonstrate that the way statistical maps are corrected for multiple comparisons has a profound influence on whether alterations in white matter integrity in non-NPSLE patients are deemed significant.
Journal of Toxicology and Environmental Health | 2012
Hans-Peter Rihs; Boleslaw Marczynski; Anne Lotz; Monika Raulf-Heimsoth; Thomas Brüning
The influence of DNA repair gene polymorphisms (XRCC1: Arg194Trp, Arg280His, Arg399Gln; APE1: Asp148Glu; hOGG1: Ser326Cys) on oxidative DNA damage is controversial and was investigated in 214 German workers with occupational exposure to vapors and aerosols of bitumen,compared to 87 German construction workers without exposure, who were part of the Human Bitumen Study. Genotypes were determined by real-time polymerase chain reaction (PCR), and actual smoking habits by a questionnaire and cotinine analysis. Oxidative DNA damage in white blood cells (WBC) collected pre- and postshift was measured as 8-oxodGuo adducts/106 dGuo by a hjigh-performance liquid chromatography electron capture detection (HPLC-ECD) method, followed by calculation of the difference between post- and preshift values (Δ8-oxodGuo/106 dGuo). The 214 bitumen exposed workers showed higher median Δ8-oxodGuo values than the 87 references. In the whole study group (n = 301) there was a trend for increasing adduct values for XRCC1 Arg(GG)399Gln(AA) during a shift, especially in nonsmokers (n = 108. Referents (n = 87) displayed a similar trend for hOGG1 Ser(CC)326Cys(GG). In contrast, XRCC1 Arg(GG)280His(AA) showed a decrease of median Δ8-oxodGuo/106 dGuo values in workers with exposure to vapors and aerosols of bitumen (n = 214), especially in smokers (n = 145). XRCC1 Arg194Trp and APE1 Asp148Glu displayed no marked association with Δ8-oxodGuo levels. Data indicate that the combination of different variants in DNA damage repair enzymes may modulate the production of 8-oxoguanine adducts in WBC produced by xenobiotics during a shift.
International Journal of Cancer | 2014
Christina Justenhoven; Daniela Pentimalli; Sylvia Rabstein; Volker Harth; Anne Lotz; Beate Pesch; Thomas Brüning; Thilo Dörk; Peter Schürmann; Natalia Bogdanova; Tjoung Won Park-Simon; Fergus J. Couch; Janet E. Olson; Peter A. Fasching; Matthias W. Beckmann; Lothar Häberle; Arif B. Ekici; Per Hall; Kamilla Czene; Janjun Liu; Jingmei Li; Christian Baisch; Ute Hamann; Yon Ko; Hiltrud Brauch
The cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of testosterone. Functional changes in this enzyme may influence endogenous hormone exposure, which has been associated with risk of breast cancer. To assess potential associations between two functional polymorphisms CYP2B6_516_G>T (rs3745274) and CYP2B6_785_A>G (rs2279343) and breast cancer risk, we established a specific matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry assay. The GENICA breast cancer case–control study showed associations between the variant genotypes CYP2B6_516_TT and CYP2B6_785_GG and breast cancer risk with odds ratios (ORs) of 1.34 (p = 0.001) and 1.31 (p = 0.002), respectively. A similar effect was observed for carriers of the CYP2B6_516_T allele in a validation study including four independent studies from Germany, Sweden and USA. In a pooled analysis of all five studies involving 4,638 breast cancer cases and 3,594 controls of European ancestry, carriers of the CYP2B6_516_G and the CYP2B6_785_G variant had an increased breast cancer risk with ORs of 1.10 (p = 0.027) and 1.10 (p = 0.031), respectively. We conclude that the genetic variants CYP2B6_516_G and CYP2B6_785_G (designated CYP2B6*6), which are known to decrease activity of the CYP2B6 enzyme, contribute to an increased breast cancer risk.
Annals of Occupational Hygiene | 2014
Swaantje Casjens; Jana Henry; Hans-Peter Rihs; Martin Lehnert; Monika Raulf-Heimsoth; Peter Welge; Anne Lotz; Rainer Van Gelder; Jens-Uwe Hahn; Hugo Stiegler; Lewin Eisele; Tobias Weiss; Andrea Hartwig; Thomas Brüning; Beate Pesch
Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with high-emission technologies.
Journal of Toxicology and Environmental Health | 2012
Hans-Peter Rihs; Anne Lotz; Franziska Ruëff; Olfert Landt; Thomas Brüning; Monika Raulf-Heimsoth
It is a matter of debate whether single nucleotide polymorphisms (SNP) in the promoter region of interleukin (IL)-13, an IgE regulator, and IL-18, an inducer of immune responses, modulating the respective protein expression, are accompanied by an increased risk of atopy, allergic asthma, and total IgE levels. The suspected associations were noted in health care workers (HCW) with and without latex allergy. IL-13 (−1055C>T) and three IL-18 (−656T>G, −607C>A, −137G>C) SNP were studied in 523 HCW with natural rubber latex (NRL) exposure and diagnosis in the late 1990s. Three hundred and thirty-four HCW displayed NRL sensitization and allergic symptoms, 93 with latex-allergic asthma, and 189 HCW with neither symptoms nor NRL sensitization. SNP analyses were performed by real-time polymerase chain reaction (PCR) using newly developed LightCycler assays. Analysis of IL-13 −1055C>T by analysis of variance (ANOVA) revealed significantly elevated total IgE levels in HCW carrying the CT or TT variant compared with the CC variant. None of the studied SNP showed an association with NRL-specific IgE. The IL-18 variants −656GG and −607CC displayed 99.5% linkage disequilibrium. Frequencies of alleles −656GG and −607CC were elevated in HCW with NRL asthma (48.4%) compared with HCW without symptoms (37.6%). In contrast, IL-18 −137G>C variants displayed an overall homogenous distribution. The association between the IL-13 -1055T allele and elevated total IgE levels confirms the role of a genetic background for total IgE regulation. The studied IL-18 SNP demonstrated no significant association with the clinical outcome, total IgE, or specific IgE in HCW with natural rubber latex allergy.
Breast Cancer Research and Treatment | 2012
Christina Justenhoven; Ofure Obazee; Stefan Winter; Fergus J. Couch; Janet E. Olson; Per Hall; Ulf Hannelius; Jingmei Li; Keith Humphreys; Gianluca Severi; Graham G. Giles; Melissa C. Southey; Laura Baglietto; Peter A. Fasching; Matthias W. Beckmann; Arif B. Ekici; Ute Hamann; Christian Baisch; Volker Harth; Sylvia Rabstein; Anne Lotz; Beate Pesch; Thomas Brüning; Yon Ko; Hiltrud Brauch
Christina Justenhoven • Ofure Obazee • Stefan Winter • Fergus J. Couch • Janet E. Olson • Per Hall • Ulf Hannelius • Jingmei Li • Keith Humphreys • Gianluca Severi • Graham Giles • Melissa Southey • Laura Baglietto • Peter A. Fasching • Matthias W. Beckmann • Arif B. Ekici • Ute Hamann • Christian Baisch • Volker Harth • Sylvia Rabstein • Anne Lotz • Beate Pesch • Thomas Bruning • Yon-Dschun Ko • Hiltrud Brauch
Journal of Toxicology and Environmental Health | 2016
Monika Raulf; Tobias Weiss; Anne Lotz; Martin Lehnert; Frank Hoffmeyer; Verena Liebers; Rainer Van Gelder; Heiko U. Käfferlein; Andrea Hartwig; Beate Pesch; Thomas Brüning
ABSTRACT Welding fumes may produce adverse health effects in the respiratory tract. To assess the relationship between exposure to welding fumes and inflammation in the upper airways, 190 male welders were examined from the WELDOX study (median age 40 yr, 54.7% smokers, and 32.9% atopics). Inhalable welding fumes were collected in the breathing zone of welders during a single shift. Chromium (Cr), nickel (Ni), manganese (Mn), and iron (Fe) were measured in the welding-fume samples and in postshift nasal lavage fluid (NALF). In addition, the numbers of particles and inflammatory biomarkers, including total and differential cell counts, interleukin (IL)-8, leukotriene (LT) B4, 8-isoprostane (8-iso-PGF2α), tissue inhibitor of metalloproteinase-1 (TIMP-1), and immunoreactive matrix metalloproteinase (MMP)-9, were determined. Metal concentrations in NALF correlated with airborne concentrations. No significant association was found between airborne metal concentrations and biomarkers of inflammation in NALF, whereas increasing metal concentrations in NALF resulted in increased concentrations of total protein, IL-8, MMP-9, and TIMP-1. LTB4 and 8-iso PGF2α were elevated at higher concentrations of Cr or Ni in NALF. The same was true for Fe, although the effects were less pronounced and of borderline significance. In conclusion, our results showed a significant association between the concentrations of metals and soluble inflammatory markers in the NALF of welders. The noninvasive collection of NALF is applicable in field studies, where it may serve as a suitable matrix to simultaneously assess biomarkers of exposure and effect in the upper respiratory tract in workers who are occupationally exposed to airborne hazardous substances.