Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Jaubert is active.

Publication


Featured researches published by Anne-Marie Jaubert.


Journal of Biological Chemistry | 1998

Modulation of White Adipose Tissue Lipolysis by Nitric Oxide

Nicolas Gaudiot; Anne-Marie Jaubert; Elisabeth Charbonnier; D. Sabourault; Danièle Lacasa; Yves Giudicelli; Catherine Ribière

In isolated adipocytes, the nitrosothiolsS-nitroso-N-acetyl-penicillamine (SNAP) andS-nitrosoglutathione stimulate basal lipolysis, whereas the nitric oxide (NO ⋅ ) donor 1-propamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazine) (PAPA-NONOate) or NO gas have no effect. The increase in basal lipolysis due to nitrosothiols was prevented by dithiothreitol but not by a guanylate cyclase inhibitor. In addition the cyclic GMP-inhibited low K m , cyclic AMP phosphodiesterase activity was inhibited by SNAP suggesting that SNAP acting as NO+ donor increases basal lipolysis through a S-nitrosylation mediated inhibition of phosphodiesterase. Contrasting with these findings, SNAP reduced both isoproterenol-stimulated lipolysis and cyclic AMP production, whereas it failed to modify forskolin-, dibutyryl cyclic AMP-, or isobutylmethylxanthine-stimulated lipolysis, suggesting that SNAP interferes with the β-adrenergic signal transduction pathway upstream the adenylate cyclase. In contrast with SNAP, PAPA-NONOate or NO gas inhibited stimulated lipolysis whatever the stimulating agents used without altering cyclic AMP production. Moreover PAPA-NONOate slightly reduces (30%) the hormone-sensitive lipase (HSL) activity indicating that stimulated lipolysis inhibition by NO ⋅ is linked to both inhibition of the HSL activity and the cyclic AMP-dependent activation of HSL. These data suggest that NO ⋅ or related redox species like NO+/NO− are potential regulators of lipolysis through distinct mechanisms.


Molecular Nutrition & Food Research | 2014

Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats

Nolwenn Joffin; Anne-Marie Jaubert; Sylvie Durant; Jean Bastin; Jean-Pascal De Bandt; Luc Cynober; Christophe Moinard; Claude Forest; Philippe Noirez

SCOPE During aging, increased visceral adipose tissue (AT) mass may result in impaired metabolic status. A citrulline (CIT)-supplemented diet reduces AT mass in old rats. We hypothesized that CIT could directly affect fatty acid (FA) metabolism in retroperitoneal AT. METHODS AND RESULTS A 24-h exposure of AT explants from old (25 months) rats to 2.5 mM CIT induced a 50% rise in glycerol and FA release, which was not observed in explants from young (2 months) animals. The phosphorylated form of hormone-sensitive lipase, a key lipolytic enzyme, was 1.5-fold higher in CIT-treated explants from old and young rats, whereas glyceroneogenesis, that provides glycerol-3P requested for FA re-esterification, and its key enzyme phosphoenolpyruvate carboxykinase, were down-regulated 40-70%. Specifically in young rats, beta-oxidation capacity and gene expressions of carnitine palmitoyl transferase 1-b and very long chain acyl-CoA dehydrogenase were strongly up-regulated by CIT. In contrast, in old rats, while glyceroneogenesis was lower, beta-oxidation was not affected, enabling increased FA release. CONCLUSION Hence, in visceral AT, CIT exerts a specific induction of the beta-oxidation capacity in young rats and a selective stimulation of FA release in old rats, therefore providing a direct mechanism of CIT action to reduce AT mass.


Biochimie | 2012

Is there NO help for leptin

Nolwenn Joffin; Fatoumata Niang; Claude Forest; Anne-Marie Jaubert

Since the initial identification of leptin as the product of the ob gene in 1994, the signaling pathways by which this hormone alters cell physiology have been the subject of extensive investigations. The fact that leptin can induce nitric oxide (NO) production was first demonstrated in studies of the pituitary gland and pancreatic islets. A large number of additional studies further showed that this adipokine stimulates NO synthesis in multiple tissues. This review article discusses the role of leptin in NO production and its pathophysiological consequences. The role of this gaseous messenger in cell physiology depends on the cell type, the concentration of NO and the duration of exposure. It can be either a potent oxidant or a protector of cell integrity against the formation of reactive oxygen species. Leptin plays two opposing roles on arterial pressure. It exerts a hypertensive effect due to sympathetic activation and a vasorelaxant effect due to NO production. This adipokine acts via NO to produce pro-inflammatory factors in cartilage pathology, potentially contributing to an increased risk for osteoarthritis. Another well-documented role of leptin-induced NO, acting either directly or via the hypothalamus, concerns lipid metabolism in muscle and adipose tissue. In adipocytes, the direct and rapid action of leptin is to activate the nitric oxide synthase III, which favors lipolysis. In contrast, in the long-term, leptin reduces lipolysis. However, both in the short-term and in the long-term, glyceroneogenesis and its key enzyme, the cytosolic phosphoenolpyruvatecarboxykinase (PEPCK-C), are down-regulated by the adipokine, thus favoring fatty acid release. Hence, leptin-induced NO production plays a crucial role in fatty acid metabolism in adipose tissue. The resulting effects are to prevent lipid storage and to improve energy expenditure, with possible improvements of the obese state and its associated diseases.


Adipocyte | 2015

Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats

Nolwenn Joffin; Anne-Marie Jaubert; Jessica Bamba; Robert Barouki; Philippe Noirez; Claude Forest

A diet enriched with citrulline (CIT) reduces white adipose tissue (WAT) mass. We recently showed that CIT stimulated β-oxidation in rat WAT explants from young (2–4 months) but not old (25 months) rats. Here we show that both in old rats and high-fat-diet-fed young rats, uncoupling protein one (UCP1) mRNA and protein expressions were weaker than those in young control rats. Selectively in WAT from young rats, a 24h CIT treatment up-regulated expressions of UCP1, peroxisome proliferator-activated receptor-α (PPARα), PPARγ-coactivator-1-α and mitochondrial-transcription-factor-A whereas it down-regulated PPARγ2 gene expression, whatever the diet. These results suggest that CIT induces a new metabolic status in WAT, with increased β-oxidation and uncoupling of respiratory chain, resulting in energy expenditure that favors fat mass reduction.


Journal of Nutrition | 2011

Leptin Induces Nitric Oxide-Mediated Inhibition of Lipolysis and Glyceroneogenesis in Rat White Adipose Tissue

Fatoumata Niang; Chantal Benelli; Catherine Ribière; Martine Collinet; Nadia Mehebik-Mojaat; Graziella Penot; Claude Forest; Anne-Marie Jaubert

Leptin is secreted by white adipose tissue (WAT) and induces lipolysis and nonesterified fatty acid (NEFA) oxidation. During lipolysis, NEFA efflux is the result of triglyceride breakdown, NEFA oxidation, and re-esterification via glyceroneogenesis. Leptins effects on glyceroneogenesis remain unexplored. We investigated the effect of a long-term treatment with leptin at a physiological concentration (10 μg/L) on lipolysis and glyceroneogenesis in WAT explants and analyzed the underlying mechanisms. Exposure of rat WAT explants to leptin for 2 h resulted in increased NEFA and glycerol efflux. However, a longer treatment with leptin (18 h) did not affect NEFA release and reduced glycerol output. RT-qPCR showed that leptin significantly downregulated the hormone-sensitive lipase (HSL), cytosolic phosphoenolpyruvate carboxykinase (Pck1), and PPARγ genes. In agreement with its effect on mRNA, leptin also decreased the levels of PEPCK-C and HSL proteins. Glyceroneogenesis, monitored by [1-(14) C] pyruvate incorporation into lipids, was reduced. Because leptin increases nitric oxide (NO) production in adipocytes, we explored the role of NO in the leptin signaling pathway. Pretreatment of explants with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester eliminated the effect of leptin on lipolysis, glyceroneogenesis, and expression of the HSL, Pck1, and PPARγ genes. The NO donor S-nitroso-N-acetyl-DL penicillamine mimicked leptin effects, thus demonstrating the role of NO in these pathways. The inverse time-dependent action of leptin on WAT is consistent with a process that limits NEFA re-esterification and energy storage while reducing glycerol release, thus preventing hypertriglyceridemia.


Molecular Nutrition & Food Research | 2014

Citrulline reduces glyceroneogenesis and induces fatty acid release in visceral adipose tissue from overweight rats

Nolwenn Joffin; Anne-Marie Jaubert; Sylvie Durant; Jean Bastin; Jean-Pascal De Bandt; Luc Cynober; Christophe Moinard; Xavier Coumoul; Claude Forest; Philippe Noirez

SCOPE High-fat diet (HFD) increases visceral adipose tissue (AT). Our aim was to evaluate whether citrulline (CIT) affected nonesterified fatty acid (NEFA) metabolism in AT from HFD-fed rats. METHODS AND RESULTS Rats were fed for 8 weeks with either a control diet (CD) or HFD. Retroperitoneal AT explants were exposed to 2.5 mmol/L CIT for 24 h. We analyzed lipolysis, beta-oxidation, glyceroneogenesis, and the expression of the key associated enzymes. CIT doubled NEFA release selectively in HFD AT. Phosphorylation of hormone-sensitive lipase was upregulated 50 and 100% by CIT in CD and HFD AT, respectively. Under CIT, beta-oxidation increased similarly whatever the diet, whereas glyceroneogenesis, which permits NEFA re-esterification, was downregulated 50 and 80% in CD and HFD AT, respectively. In the latter, the important decrease in re-esterification probably explains the rise of NEFA release. A pretreatment with the nitric oxide synthase inhibitor N ω-nitro-l-arginine methyl ester abolished CIT effects. CONCLUSION These results demonstrate direct lipolytic and antiglyceroneogenic effects of CIT on CD and HFD AT. The selective CIT-mediated NEFA release from HFD AT was probably the consequence of the drastic decrease in glyceroneogenesis and nitric oxide was a mediator of CIT effects. These results provide evidence for a direct action of CIT on AT to reduce overweight.


Adipocyte | 2016

What induces watts in WAT

Claude Forest; Nolwenn Joffin; Anne-Marie Jaubert; Philippe Noirez

ABSTRACT Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells (“beige” or “brite”) in WAT, a process named “browning.” Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.


PLOS ONE | 2012

Rapid Nitration of Adipocyte Phosphoenolpyruvate Carboxykinase by Leptin Reduces Glyceroneogenesis and Induces Fatty Acid Release

Anne-Marie Jaubert; Graziella Penot; Fatoumata Niang; Sylvie Durant; Claude Forest

Fatty acid (FA) release from white adipose tissue (WAT) is the result of the balance between triglyceride breakdown and FA re-esterification. The latter relies on the induction of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), the key enzyme for glyceroneogenesis. We previously demonstrated that long-term (18 h) leptin treatment of rat epididymal WAT explants reduced glyceroneogenesis through nitric oxide (NO)-induced decrease in PEPCK-C expression. We investigated the effect of a short-term leptin treatment (2 h) on PEPCK-C expression and glyceroneogenesis in relation to NO production. We demonstrate that in WAT explants, leptin-induced NO synthase III (NOS III) phosphorylation was associated with reduced PEPCK-C level and glyceroneogenesis, leading to FA release, while PEPCK-C gene expression remained unaffected. These effects were absent in WAT explants from leptin receptor-deficient Zucker rat. Immunoprecipitation and western blot experiments showed that the leptin-induced decrease in PEPCK-C level was correlated with an increase in PEPCK-C nitration. All these effects were abolished by the NOS inhibitor Nω-nitro-L-arginine methyl ester and mimicked by the NO donor S-nitroso-N-acetyl-DL penicillamine. We propose a mechanism in which leptin activates NOS III and induces NO that nitrates PEPCK-C to reduce its level and glyceroneogenesis, therefore limiting FA re-esterification in WAT.


Biochimie Open | 2015

Citrulline counteracts overweight- and aging-related effects on adiponectin and leptin gene expression in rat white adipose tissue

Nolwenn Joffin; Anne-Marie Jaubert; Sylvie Durant; Robert Barouki; Claude Forest; Philippe Noirez

We recently demonstrated that citrulline (CIT) reduced the expression of inflammatory genes in cultured explants from retroperitoneal (RET) white adipose tissue (WAT) from young (2–4 months) but not old (25 months) rats. Here we show that in RET WAT from old rats and high-fat-diet-fed (HFD) young rats, the basal expression of the leptin gene was increased (275–345%) whereas that of the adiponectin gene was decreased (48–60%), when compared to those from control-diet-fed (CD) young rats. We show also that in RET WAT from old rats, a diet supplemented with CIT for 3 months reduced macrophage (F4/80, CD68) and inflammation (interleukin-6, tumor necrosis factor-α) marker genes 23–97%. CIT supplementation lowered leptin mRNA 62% and increased adiponectin mRNA 232%. In cultured explants of RET WAT from 4 month-old CD, 4 month-old HFD and 25-month-old CD rats, the exposure to 2.5 mmol/L CIT for 24 h up-regulated adiponectin gene expression 151%, 362% and 216% respectively. In contrast, leptin gene expression was down-regulated 66% selectively in CIT-treated explants from 25-month-old CD rats. These results further support the proposed beneficial effect of CIT to counteract the deleterious effects of aging and overweight on the metabolic, inflammatory and endocrine functions of WAT.


Journal of Cellular Biochemistry | 2009

Leptin and insulin induce mutual resistance for nitric oxide synthase III activation in adipocytes.

Nadia Mehebik-Mojaat; Catherine Ribière; Fatoumata Niang; Claude Forest; Anne-Marie Jaubert

Obesity‐induced hyperleptinemia is frequently associated with insulin resistance suggesting a crosstalk between leptin and insulin signaling pathways. Our aim was to determine whether insulin and leptin together interfere on NOS activation in adipocytes. We examined insulin and leptin‐induced nitric oxide synthase (NOS) activity, protein amount and NOS III phosphorylation at Ser1179 in isolated epididymal adipocytes from rat, in the presence or not of inhibitors of kinases implicated in insulin or leptin signaling pathways. Insulin or leptin induced NOS III phosphorylation at Ser1179 leading to increased NO production in rat adipocytes, in agreement with our previous observations. When insulin and leptin at a concentration found in obese rats (10 ng/ml) were combined, NOS activity was not increased, suggesting a negative crosstalk between insulin and leptin signaling mechanisms. Chemical inhibitors of kinases implicated in signaling pathways of insulin, such as PI‐3 kinase, or of leptin, such as JAK‐2, did not prevent this negative interaction. When leptin signaling was blocked by PKA inhibitors, insulin‐induced NOS activity and NOS III phosphorylation at Ser1179 was observed. In the presence of leptin and insulin, (i) IRS‐1 was phosphorylated on Ser307 and this effect was prevented by PKA inhibitors, (ii) JAK‐2 was dephosphorylated, an effect prevented by SHP‐1 inhibitor. A mutual resistance occurs with leptin and insulin. Leptin phosphorylates IRS‐1 to induce insulin resistance while insulin dephosphorylates JAK‐2 to favor leptin resistance. This interference between insulin and leptin signaling could play a crucial role in insulin‐ and leptin‐resistance correlated with obesity. J. Cell. Biochem. 108: 982–988, 2009.

Collaboration


Dive into the Anne-Marie Jaubert's collaboration.

Top Co-Authors

Avatar

Philippe Noirez

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-P. De Bandt

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Jean Bastin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Luc Cynober

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Robert Barouki

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

C. Moinard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Sabourault

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Cynober

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge