Anne Marowsky
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Marowsky.
Neuron | 2005
Anne Marowsky; Yuchio Yanagawa; Kunihiko Obata; Kaspar E. Vogt
The amygdala is under inhibitory control from the cortex through the activation of local GABAergic interneurons. This inhibition is greatly diminished during heightened emotional states due to dopamine release. However, dopamine excites most amygdala interneurons, suggesting that this dopaminergic gate may be mediated by an unknown subpopulation of interneurons. We hypothesized that this gate is mediated by paracapsular intercalated cells, a subset of interneurons that are innervated by both cortical and mesolimbic dopaminergic afferents. Using transgenic mice that express GFP in GABAergic interneurons, we show that paracapsular cells form a network surrounding the basolateral complex of the amygdala. We found that they provide feedforward inhibition into the basolateral and the central amygdala. Dopamine hyperpolarized paracapsular cells through D1 receptors and substantially suppressed their excitability, resulting in a disinhibition of the basolateral and central nuclei. Suppression of the paracapsular system by dopamine provides a compelling neural mechanism for the increased affective behavior observed during stress or other hyperdopaminergic states.
Neuroscience | 2006
F.E. Studer; D.E. Fedele; Anne Marowsky; C. Schwerdel; K. Wernli; Kaspar E. Vogt; Jean-Marc Fritschy; Detlev Boison
Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.
European Journal of Neuroscience | 2004
Anne Marowsky; Jean-Marc Fritschy; Kaspar E. Vogt
The physiological significance of the large diversity of GABAA receptors is poorly understood. Using mice, which carry a point mutation that renders specific subtypes of GABAA receptors diazepam insensitive, it was recently discovered that particular types of GABAA receptors are involved in specific, behaviorally relevant signaling pathways. We have used these mice to study inhibitory synaptic transmission in the amygdala. GABAA receptor‐mediated inhibitory postsynaptic currents (IPSCs) per se were not affected by the point mutations. Their modulation by diazepam, however, was altered depending on the genotype of the mice studied. Based on the different responses to diazepam, we found that IPSCs in the lateral/basolateral amygdala were mediated by both α2‐ and α1‐subunit‐containing GABAA receptors whereas those in the central amygdala were mediated only by α2‐subunit‐containing GABAA receptors. Immunohistochemical staining corroborated these findings at a morphological level. To investigate a possible link between interneuron and receptor diversity, we selectively depressed release from the subset of GABAergic terminals carrying type 1 cannabinoid receptors. These receptors are known to modulate amygdala‐mediated behavior. Application of a type 1 cannabinoid receptor agonist resulted in a selective reduction of inhibitory current mediated by α1‐subunit‐containing GABAA receptors. Mice with specific diazepam‐insensitive GABAA receptor subtypes therefore provide a novel tool to investigate GABAA receptor distribution and the organization of inhibitory circuits at a functional level. The crucial role of the amygdala for the mediation of anxiety is in agreement with the part that α2‐subunit‐containing GABAA receptors play in anxiolysis and their important function in this area of the brain.
Neuroscience | 2009
Anne Marowsky; Julia Burgener; John R. Falck; Jean-Marc Fritschy; Michael Arand
Epoxide hydrolases comprise a family of enzymes important in detoxification and conversion of lipid signaling molecules, namely epoxyeicosatrienoic acids (EETs), to their supposedly less active form, dihydroxyeicosatrienoic acids (DHETs). EETs control cerebral blood flow, exert analgesic, anti-inflammatory and angiogenic effects and protect against ischemia. Although the role of soluble epoxide hydrolase (sEH) in EET metabolism is well established, knowledge on its detailed distribution in rodent brain is rather limited. Here, we analyzed the expression pattern of sEH and of another important member of the EH family, microsomal epoxide hydrolase (mEH), in mouse brain by immunohistochemistry. To investigate the functional relevance of these enzymes in brain, we explored their individual contribution to EET metabolism in acutely isolated brain cells from respective EH -/- mice and wild type littermates by mass spectrometry. We find sEH immunoreactivity almost exclusively in astrocytes throughout the brain, except in the central amygdala, where neurons are also positive for sEH. mEH immunoreactivity is abundant in brain vascular cells (endothelial and smooth muscle cells) and in choroid plexus epithelial cells. In addition, mEH immunoreactivity is present in specific neuronal populations of the hippocampus, striatum, amygdala, and cerebellum, as well as in a fraction of astrocytes. In freshly isolated cells from hippocampus, where both enzymes are expressed, sEH mediates the bulk of EET metabolism. Yet we observe a significant contribution of mEH, pointing to a novel role of this enzyme in the regulation of physiological processes. Furthermore, our findings indicate the presence of additional, hitherto unknown cerebral epoxide hydrolases. Taken together, cerebral EET metabolism is driven by several epoxide hydrolases, a fact important in view of the present targeting of sEH as a potential therapeutic target. Our findings suggest that these different enzymes have individual, possibly quite distinct roles in brain function and cerebral EET metabolism.
The Journal of Neuroscience | 2012
Anne Marowsky; Uwe Rudolph; Jean-Marc Fritschy; Michael Arand
GABAergic inhibition in the amygdala is essential in regulating fear and anxiety. Although fast “phasic” inhibition arising through the activation of postsynaptic GABAA receptors (GABAARs) has been well described in the amygdala, much less is known about extrasynaptic GABAARs mediating persistent or tonic inhibition and regulating neuronal excitability. Here, we recorded tonic currents in the basolateral (BLA) nucleus and the lateral (LA) nucleus of the amygdala. While all BLA principal cells expressed a robust GABAergic tonic current, only 70% of LA principal cells showed a tonic current. Immunohistochemical stainings revealed that the α3 GABAAR subunit is expressed moderately in the LA and strongly throughout the BLA nucleus, where it is located mostly at extrasynaptic sites. In α3 subunit KO mice, tonic currents are significantly reduced in BLA principal cells yet not in LA principal cells. Moreover, the α3 GABAAR-selective benzodiazepine site agonist and anxiolytic compound TP003 increases tonic currents and dampens excitability markedly in wild-type BLA principal cells but fails to do so in α3KO BLA cells. Interneurons of the LA and BLA nuclei also express a tonic current, but TP003-induced potentiation is seen in only a small fraction of these cells, suggesting that primarily other GABAAR variants underlie tonic inhibition in this cell type. Together, these studies demonstrate that α3 GABAAR-mediated tonic inhibition is a central component of the inhibitory force in the amygdala and that tonically activated α3 GABAARs present an important target for anxiolytic or fear-reducing compounds.
Journal of Lipid Research | 2012
Martina Decker; Magdalena Adamska; Annette Cronin; Francesca Di Giallonardo; Julia Burgener; Anne Marowsky; John R. Falck; Christophe Morisseau; Bruce D. Hammock; Artiom Gruzdev; Darryl C. Zeldin; Michael Arand
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N’-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II.
Frontiers in Neural Circuits | 2014
Anne Marowsky; Kaspar E. Vogt
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5–10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Archives of Toxicology | 2016
Anne Marowsky; Karen Haenel; Ernesto Bockamp; Rosario Heck; Sibylle Rutishauser; Nandkishor Mule; Diana Kindler; Markus Rudin; Michael Arand
Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.
Neuropharmacology | 2017
Nandkishor Mule; Anette C. Orjuela Leon; John R. Falck; Michael Arand; Anne Marowsky
&NA; Recent studies suggest a role for the arachidonic acid‐derived epoxyeicosatrienoic acids (EETs) in attenuating epileptic seizures. However, their effect on neurotransmission has never been investigated in detail. Here, we studied how 11,12‐ and 14,15 EET affect excitability and excitatory neurotransmission in mouse hippocampus. 11,12 EET (2 &mgr;M), but not 14,15 EET (2 &mgr;M), induced the opening of a hyperpolarizing K+ conductance in CA1 pyramidal cells. This action could be blocked by BaCl2, the G protein blocker GDP&bgr;‐S and the GIRK1/4 blocker tertiapin Q and the channel was thus identified as a GIRK channel. The 11,12 EET‐mediated opening of this channel significantly reduced excitability of CA1 pyramidal cells, which could not be blocked by the functional antagonist EEZE (10 &mgr;M). Furthermore, both 11,12 EET and 14,15 EET reduced glutamate release on CA1 pyramidal cells with 14,15 EET being the less potent regioisomer. In CA1 pyramidal cells, 11,12 EET reduced the amplitude of excitatory postsynaptic currents (EPSCs) by 20% and the slope of field excitatory postsynaptic potentials (fEPSPs) by 50%, presumably via a presynaptic mechanism. EEZE increased both EPSC amplitude and fEPSP slope by 40%, also via a presynaptic mechanism, but failed to block 11,12 EET‐mediated reduction of EPSCs and fEPSPs. This strongly suggests the existence of distinct targets for 11,12 EET and EEZE in neurons. In summary, 11,12 EET substantially reduced excitation in CA1 pyramidal cells by inhibiting the release of glutamate and opening a GIRK channel. These findings might explain the therapeutic potential of EETs in reducing epileptiform activity. Highlights11,12 EET hyperpolarizes CA1 pyramidal cells by activating a GIRK channel.Both 11,12 and 14,15 EET inhibit glutamate release onto these cells.These effects may explain the therapeutic potential of EETs in reducing epileptiform activity.The functional antagonist EEZE does not block EET effects in CA1 pyramidal cells.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Mohammed Nayeem; Darryl C. Zeldin; Matthew A. Boegehold; Christophe Morisseau; Anne Marowsky; Dovenia S. Ponnoth; Kevin Roush; John R. Falck