Annette Cronin
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annette Cronin.
Archives of Toxicology | 2009
Martina Decker; Michael Arand; Annette Cronin
Epoxide hydrolases catalyse the hydrolysis of electrophilic—and therefore potentially genotoxic—epoxides to the corresponding less reactive vicinal diols, which explains the classification of epoxide hydrolases as typical detoxifying enzymes. The best example is mammalian microsomal epoxide hydrolase (mEH)—an enzyme prone to detoxification—due to a high expression level in the liver, a broad substrate selectivity, as well as inducibility by foreign compounds. The mEH is capable of inactivating a large number of structurally different, highly reactive epoxides and hence is an important part of the enzymatic defence of our organism against adverse effects of foreign compounds. Furthermore, evidence is accumulating that mammalian epoxide hydrolases play physiological roles other than detoxification, particularly through involvement in signalling processes. This certainly holds true for soluble epoxide hydrolase (sEH) whose main function seems to be the turnover of lipid derived epoxides, which are signalling lipids with diverse functions in regulatory processes, such as control of blood pressure, inflammatory processes, cell proliferation and nociception. In recent years, the sEH has attracted attention as a promising target for pharmacological inhibition to treat hypertension and possibly other diseases. Recently, new hitherto uncharacterised epoxide hydrolases could be identified in mammals by genome analysis. The expression pattern and substrate selectivity of these new epoxide hydrolases suggests their participation in signalling processes rather than a role in detoxification. Taken together, epoxide hydrolases (1) play a central role in the detoxification of genotoxic epoxides and (2) have an important function in the regulation of physiological processes by the control of signalling molecules with an epoxide structure.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Annette Cronin; Sherry L. Mowbray; Heike Dürk; Shirli Homburg; Ingrid Fleming; Beate Fisslthaler; Franz Oesch; Michael Arand
The mammalian soluble epoxide hydrolase (sEH) is an enzyme with multiple functions, being implicated in detoxification of xenobiotic epoxides as well as in regulation of physiological processes such as blood pressure. The enzyme is a homodimer, in which each subunit is composed of two domains. The 35-kDa C-terminal domain has an α/β hydrolase fold and harbors the catalytic center for the EH activity. The 25-kDa N-terminal domain has a different α/β fold and belongs to the haloacid dehalogenase superfamily of enzymes. The catalytic properties of the enzyme reported so far can all be explained by the action of the C-terminal domain alone. The function of the N-terminal domain, other than in structural stabilization of the dimer, has therefore remained unclear. By structural comparison of this domain to other haloacid dehalogenase family members, we identified a putative active site containing all necessary components for phosphatase activity. Subsequently, we found rat sEH hydrolyzed 4-nitrophenyl phosphate with a rate constant of 0.8 s−1 and a Km of 0.24 mM. Recombinant human sEH lacking the C-terminal domain also displayed phosphatase activity. Presence of a phosphatase substrate did not affect epoxide turnover nor did epoxides affect dephosphorylation by the intact enzyme, indicating both catalytic sites act independently. The enzyme was unable to hydrolyze 4-nitrophenyl sulfate, suggesting its role in xenobiotic metabolism does not extend beyond phosphates. Thus, we propose this domain participates instead in the regulation of the physiological functions associated with sEH.
Methods in Enzymology | 2005
Michael Arand; Annette Cronin; Magdalena Adamska; Franz Oesch
Epoxide hydrolases are a class of enzymes important in the detoxification of genotoxic compounds, as well as in the control of physiological signaling molecules. This chapter gives an overview on the function, structure, and enzymatic mechanism of structurally characterized epoxide hydrolases and describes selected assays for the quantification of epoxide hydrolase activity.
Drug Metabolism Reviews | 2003
Michael Arand; Annette Cronin; Franz Oesch; Sherry L. Mowbray; T. Alwyn Jones
Abstract Traditionally, epoxide hydrolases (EH) have been regarded as xenobiotic-metabolizing enzymes implicated in the detoxification of foreign compounds. They are known to play a key role in the control of potentially genotoxic epoxides that arise during metabolism of many lipophilic compounds. Although this is apparently the main function for the mammalian microsomal epoxide hydrolase (mEH), evidence is now accumulating that the mammalian soluble epoxide hydrolase (sEH), despite its proven role in xenobiotic metabolism, also has a central role in the formation and breakdown of physiological signaling molecules. In addition, a certain class of microbial epoxide hydrolases has recently been identified that is an integral part of a catabolic pathway, allowing the use of specific terpens as sole carbon sources. The recently available x-ray structures of a number of EHs mirror their respective functions: the microbial terpen EH differs in its fold from the canonical α/β hydrolase fold of the xenobiotic-metabolizing mammalian EHs. It appears that the latter fold is the perfect solution for the efficient detoxification of a large variety of structurally different epoxides by a single enzyme, whereas the smaller microbial EH, which has a particularly high turnover number with its prefered substrate, seems to be the better solution for the hydrolysis of one specific substrate. The structure of the sEH also includes an additional catalytic domain that has recently been shown to possess phosphatase activity. Although the physiological substrate for this second active site has not been identified so far, the majority of known phosphatases are involved in signaling processes, suggesting that the sEH phosphatase domain also has a role in the regulation of physiological functions.
Journal of Lipid Research | 2012
Martina Decker; Magdalena Adamska; Annette Cronin; Francesca Di Giallonardo; Julia Burgener; Anne Marowsky; John R. Falck; Christophe Morisseau; Bruce D. Hammock; Artiom Gruzdev; Darryl C. Zeldin; Michael Arand
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N’-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II.
Journal of Lipid Research | 2011
Annette Cronin; Martina Decker; Michael Arand
Hepoxilins are lipid signaling molecules derived from arachidonic acid through the 12-lipoxygenase pathway. These trans-epoxy hydroxy eicosanoids play a role in a variety of physiological processes, including inflammation, neurotransmission, and formation of skin barrier function. Mammalian hepoxilin hydrolase, partly purified from rat liver, has earlier been reported to degrade hepoxilins to trioxilins. Here, we report that hepoxilin hydrolysis in liver is mainly catalyzed by soluble epoxide hydrolase (sEH): i) purified mammalian sEH hydrolyses hepoxilin A3 and B3 with a Vmax of 0.4–2.5 μmol/mg/min; ii) the highly selective sEH inhibitors N-adamantyl-N’-cyclohexyl urea and 12-(3-adamantan-1-yl-ureido) dodecanoic acid greatly reduced hepoxilin hydrolysis in mouse liver preparations; iii) hepoxilin hydrolase activity was abolished in liver preparations from sEH−/− mice; and iv) liver homogenates of sEH−/− mice show elevated basal levels of hepoxilins but lowered levels of trioxilins compared with wild-type animals. We conclude that sEH is identical to previously reported hepoxilin hydrolase. This is of particular physiological relevance because sEH is emerging as a novel drug target due to its major role in the hydrolysis of important lipid signaling molecules such as epoxyeicosatrienoic acids. sEH inhibitors might have undesired side effects on hepoxilin signaling.
Journal of Molecular Biology | 2008
Annette Cronin; Shirli Homburg; Heike Dürk; Ingrid Richter; Magdalena Adamska; Frederic Frère; Michael Arand
We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg(2+) binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble proteins, purified to homogeneity and subsequently analysed for their kinetic parameters. A replacement of residues D9, K160, D184 or N189 resulted in a complete loss of phosphatase activity, consistent with an essential function for catalysis. In contrast, a substitution of D11, T123, N124 and D185 leads to sEH mutant proteins with altered kinetic properties. We further provide evidence of the formation of an acylphosphate intermediate on D9 by liquid chromatography-tandem mass spectrometry based on the detection of homoserine after NaBH(4) reduction of the phosphorylated enzyme, which identifies D9 as the catalytic nucleophile. Surprisingly, we could only show such homoserine formation using the D11N mutant, which strongly suggests D11 to be involved in the acylphosphate hydrolysis. In the D11 mutant, the second catalytic step becomes rate limiting, which then allows trapping of the labile intermediate. Substrate turnover in the presence of (18)H(2)O revealed that the nucleophilic attack during the second reaction step occurs at the acylphosphate phosphorous. Based on these findings, we propose a two-step catalytic mechanism of dephosphorylation that involves the phosphate substrate hydrolysis by nucleophilic attack by the catalytic nucleophile D9 followed by hydrolysis of the acylphosphate enzyme intermediate supported by D11.
Tetrahedron-asymmetry | 2004
Maria I. Monterde; Murielle Lombard; Alain Archelas; Annette Cronin; Michael Arand; Roland Furstoss
Journal of Molecular Biology | 2005
Patrik Johansson; Torsten Unge; Annette Cronin; Michael Arand; Terese Bergfors; T. Alwyn Jones; Sherry L. Mowbray
Archive | 2003
Michael Arand; Maria Elena Herrero Plana; Jan G. Hengstler; Matthias Lohmann; Annette Cronin; Franz Oesch