Anne Mette Madsen
National Institute of Occupational Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Mette Madsen.
Particle and Fibre Toxicology | 2012
Julie A. Bourdon; Anne T. Saber; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Anne Mette Madsen; Jacob Stuart Lamson; Håkan Wallin; Peter Møller; Steffen Loft; Carole L. Yauk; Ulla Vogel
BackgroundWidespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo.MethodsWe investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR.ResultsInflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver.ConclusionsDeposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the initial exposure. Our results demonstrate that CBNPs may cause genotoxicity both in the primary exposed tissue, lung and BAL cells, and in a secondary tissue, the liver.
Applied and Environmental Microbiology | 2012
Mika Frankel; Gabriel Bekö; Michael Timm; Sine Gustavsen; Erik Wind Hansen; Anne Mette Madsen
ABSTRACT Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.
Particle and Fibre Toxicology | 2012
Anne T. Saber; Nicklas Raun Jacobsen; Alicja Mortensen; Józef Szarek; Petra Jackson; Anne Mette Madsen; Keld Alstrup Jensen; Ismo K. Koponen; Gunnar Brunborg; Kristine B. Gutzkow; Ulla Vogel; Håkan Wallin
BackgroundLittle is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2.MethodsMice received a single intratracheal instillation of 18, 54 and 162 μg of NanoTiO2 or 54, 162 and 486 μg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control.ResultsThere was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points.ConclusionsPulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.
PLOS ONE | 2013
Anne T. Saber; Jacob Stuart Lamson; Nicklas Raun Jacobsen; Gitte Ravn-Haren; Karin Sørig Hougaard; Allen Njimeri Nyendi; Pia Wahlberg; Anne Mette Madsen; Petra Jackson; Håkan Wallin; Ulla Vogel
Background Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk. Methods We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points. Conclusions Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease.
Annals of Occupational Hygiene | 2009
Anne Mette Madsen; Vivi Schlünssen; Tina Olsen; Torben Sigsgaard; Hediye Avci
Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 μm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (dae) of 2–8 μm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D50 of 1 μm (called PM1 dust). PM1 was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample ‘total dust’. The PM1 particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-β-D-glucosaminidase (NAGase), and (1 → 3)-β-D-glucans. In the 29 PM1 samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 → 3)-β-D-glucans, which are mainly associated with fungi, were present in all PM1 samples. Thermophilic actinomycetes were present in 23 of the 29 PM1 samples [average = 739 colony-forming units (CFU) m−3]. Cultivable and ‘total bacteria’ were found in average concentrations of, respectively, 249 CFU m−3 and 1.8 × 105 m−3. DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5–1.5 μm and only few particles >1.5 μm. The number of cultivable fungi and β-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 μm, with DNA/RNA-containing particles >1.5 μm, and with other fungal components in PM1 dust. Airborne β-glucan and NAGase were found in PM1 samples where no cultivable fungi were present, and β-glucan and NAGase were found in higher concentrations per fungal spore in PM1 dust than in total dust. This indicates that fungal particles smaller than fungal spore size are present in the air at the plants. Furthermore, many bacteria, including actinomycetes, were present in PM1 dust. Only 0.2% of the bacteria in PM1 dust were cultivable.
Occupational and Environmental Medicine | 2012
Ioannis Basinas; Vivi Schlünssen; Dick Heederik; Torben Sigsgaard; Lidwien A.M. Smit; Sadegh Samadi; Øyvind Omland; Charlotte Hjort; Anne Mette Madsen; Simon Skov; Inge M. Wouters
Objective To test the hypotheses that current endotoxin exposure is inversely associated with allergic sensitisation and positively associated with non-allergic respiratory diseases in four occupationally exposed populations using a standardised analytical approach. Methods Data were pooled from four epidemiological studies including 3883 Dutch and Danish employees in veterinary medicine, agriculture and power plants using biofuel. Endotoxin exposure was estimated by quantitative job-exposure matrices specific for the study populations. Dose–response relationships between exposure, IgE-mediated sensitisation to common allergens and self-reported health symptoms were assessed using logistic regression and generalised additive modelling. Adjustments were made for study, age, sex, atopic predisposition, smoking habit and farm childhood. Heterogeneity was assessed by analysis stratified by study. Results Current endotoxin exposure was dose-dependently associated with a reduced prevalence of allergic sensitisation (ORs of 0.92, 0.81 and 0.66 for low mediate, high mediate and high exposure) and hay fever (ORs of 1.16, 0.81 and 0.58). Endotoxin exposure was a risk factor for organic dust toxic syndrome, and levels above 100 EU/m3 significantly increased the risk of chronic bronchitis (p<0.0001). Stratification by farm childhood showed no effect modification except for allergic sensitisation. Only among workers without a farm childhood, endotoxin exposure was inversely associated with allergic sensitisation. Heterogeneity was primarily present for biofuel workers. Conclusions Occupational endotoxin exposure has a protective effect on allergic sensitisation and hay fever but increases the risk for organic dust toxic syndrome and chronic bronchitis. Endotoxins protective effects are most clearly observed among agricultural workers.
Reproductive Toxicology | 2013
Karin Sørig Hougaard; Petra Jackson; Zdenka O. Kyjovska; Renie K. Birkedal; Pieter-Jan De Temmerman; Andrea Brunelli; Eveline Verleysen; Anne Mette Madsen; Anne T. Saber; Giulio Pojana; Jan Mast; Antonio Marcomini; Keld Alstrup Jensen; Håkan Wallin; Józef Szarek; Alicja Mortensen; Ulla Vogel
We studied the effects of preconceptional exposure to multiwalled carbon nanotubes (MWCNTs): mature, female C57BL/6J mice were intratracheally instilled with 67μg NM-400 MWCNT, and the following day co-housed with mature males, in breeding pairs. Time to delivery of the first litter, litter parameters, maternal inflammation and histopathology of lung and liver were recorded. In male offspring, locomotor activity, startle response, and daily sperm production (DSP) were assessed. In the dams, lung and liver bore evidence of MWCNT exposure when assessed 6 weeks and 4 months after exposure. A short delay in the delivery of the first litter was observed in exposed females. Litter parameters, behavior and DSP were similar in control and exposed groups. In conclusion, instillation of a single dose of MWCNT induced long lasting pathological changes in dam lung and liver. Theoretically, lung inflammation due to particle exposure could interfere with female reproductive parameters. Whether the observed lag in delivery of a first litter was in fact caused by exposure to MWCNT should be addressed in a study designed specifically to elucidate effects on the early processes involved in establishment of pregnancy. Exposure was not associated with changes in the assessed gestational or offspring parameters.
Nanotoxicology | 2013
Petra Jackson; Sabina Halappanavar; Karin Sørig Hougaard; Andrew Williams; Anne Mette Madsen; Jacob Stuart Lamson; Ole Andersen; Carole L. Yauk; Håkan Wallin; Ulla Vogel
Abstract We investigated effects of maternal pulmonary exposure to titanium dioxide (UV-Titan) on prenatally exposed offspring. Time-mated mice (C57BL/6BomTac) were inhalation exposed (1 h/day to 42 mg UV-Titan/m3 aerosolised powder or filtered air) during gestation days (GDs) 8–18. We evaluated DNA strand breaks using the comet assay in bronchoalveolar lavage (BAL) cells and livers of the time-mated mice (5 and 26–27 days after inhalation exposure), and in livers of the offspring (post-natal days (PND) 2 and 22). We also analysed hepatic gene expression in newborns using DNA microarrays. UV-Titan exposure did not induce DNA strand breaks in time-mated mice or their offspring. Transcriptional profiling of newborn livers revealed changes in the gene expression related to the retinoic acid signalling pathway in the females, while gene expression in male offspring was unaffected. Changes may be a secondary response to maternal inflammation although no direct link was evident through gene expression analysis.
Environmental and Molecular Mutagenesis | 2015
Petra Jackson; Kirsten I. Kling; Keld Alstrup Jensen; Per Axel Clausen; Anne Mette Madsen; Håkan Wallin; Ulla Vogel
Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured Nanomaterials (WPMN) (NM‐401, NM‐402, and NM‐403), materials (NRCWE‐026 and MWCNT‐XNRI‐7), and three sets of surface‐modified MWCNT grouped by physical characteristics (thin, thick, and short I–III, respectively). Each Groups I–III included pristine, hydroxylated and carboxylated MWCNT. Group III also included an amino‐functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by <2% of the weight, with exceptions. Based on dynamic light scattering data, the MWCNT were well‐dispersed in stock dispersion of nanopure water with 2% serum, but agglomerated and sedimented during exposure. FE1‐Muta(TM) Mouse lung epithelial cells were exposed for 24 hr. The levels of DNA strand breaks (SB) were evaluated using the comet assay, a screening assay suitable for genotoxicity testing of nanomaterials. Exposure to MWCNT (12.5–200 µg/ml) did not induce significant cytotoxicity (viability above 92%). Cell proliferation was reduced in highest doses of some MWCNT after 24 hr, and was associated with generation of reactive oxygen species and high surface area. Increased levels of DNA SB were only observed for Group II consisting of MWCNT with large diameters and high Fe2O3 and Ni content. Significantly, increased levels of SB were only observed at 200 µg/ml of MWCNT‐042. Overall, the MWCNT were not cytotoxic and weakly genotoxic after 24 hr exposure to doses up to 200 µg/ml. Environ. Mol. Mutagen. 56:183–203, 2015.
Environment International | 2014
Dorina Gabriela Karottki; Gabriel Bekö; Geo Clausen; Anne Mette Madsen; Zorana Jovanovic Andersen; Andreas Massling; Matthias Ketzel; Thomas Ellermann; Rikke Lund; Torben Sigsgaard; Peter Møller; Steffen Loft
This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations (PNC, 10-300 nm) and PM2.5 (aerodynamic diameter<2.5 μm) were monitored for each of the residences in the living room, and outdoor PNC (10-280 nm), PM2.5 and PM10 (aerodynamic diameter<10 μm) were monitored at an urban background station in Copenhagen. In the morning, after the 2-day monitoring period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data were analyzed using linear regression with the generalized estimating equation approach. Statistically significant associations were found between indoor PNC, dominated by indoor use of candles, and lower lung function, the prediabetic marker HbA1c and systemic inflammatory markers observed as changes in leukocyte differential count and expression of adhesion markers on monocytes, whereas C-reactive protein was significantly associated with indoor PM2.5. The presence of indoor endotoxin was associated with lower lung function and expression of adhesion markers on monocytes. An inverse association between outdoor PNC and MVF was also statistically significant. The study suggests that PNC in the outdoor environment may be associated with decreased MVF, while PNC, mainly driven by candle burning, and bioaerosols in the indoor environment may have a negative effect on lung function and markers of systemic inflammation and diabetes.