Anne Must
Estonian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Must.
Physiological Entomology | 2006
Anne Must; Enno Merivee; Marika Mänd; Anne Luik; Mikk Heidemaa
Abstract Cold cells innervating antennal campaniform sensilla of the ground beetles Pterostichus oblongopunctatus (Fabricius, 1787) and Poecilus cupreus (Linnaeus, 1758) belonging to the tribe Pterostichini fire at a stationary rate of 22–23 imp s−1 at 23 °C. In P. oblongopunctatus, there is a strong negative correlation between the stationary firing rate of the cold cell and temperature. By contrast, no relationship between the firing rate and temperature is observed in P. cupreus. Mean peak frequencies, reaching up to nearly 500 Hz, and first‐second firing rates, reaching up to 140 imp s−1, are observed at the beginning of the phasic‐tonic response to rapid cooling of the cold cells of P. cupreus, which are significantly higher than those for P. oblongopunctatus. However, firing rates of the cold cells of the two ground beetles studied do not differ 3 s later, during the tonic stabilization period of the response. The length of the long interspike period, lasting up to several seconds, at the beginning of rapid warming, is a positive function of the extent of change in temperature, and is longer in P. oblongopunctatus than in P. cupreus. These differences in the responses of the cold cells are related to the ecological preferences of the two ground beetles.
Journal of Insect Physiology | 2010
Enno Merivee; Anne Must; Anne Luik; Ingrid H. Williams
This study gives the first electrophysiological evidence of hygroreceptors in carabids. Extracellular recordings from the antennal dome-shaped sensilla of the carabid beetle Pterostichus oblolongopunctatus (Coleoptera, Carabidae) clearly show the presence of moist and dry neuron antagonistically responding to humidity changes. The cold neuron of the same sensillum did not respond to changes in humidity. For the first time, we demonstrate that the binary system of two antagonistic hygroreceptor neurons discriminates differences between steady-state humidity levels more sensitively than either neuron separately. Another advantage of the binary system is that it guarantees immediate and strong phasic-tonic response to rapid humidity changes in either direction. In the hygrosensing system of carabids, this would allow detection of subtle step-changes in humidity with greater sensitivity than differences in steady-state values of humidity. Thus, construction of the hygrosensing system with opposing receptor neurons may allow insects to detect environmental humidity differences critical for their habitat and microhabitat selection, and survival with great precision.
Pest Management Science | 2014
Ene Tooming; Enno Merivee; Anne Must; Ivar Sibul; Ingrid H. Williams
BACKGROUND Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. RESULTS Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. CONCLUSION Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field.
Journal of Insect Physiology | 2008
Enno Merivee; Helina Märtmann; Anne Must; Marit Milius; Ingrid H. Williams; Marika Mänd
The responses of antennal contact chemoreceptors, in the polyphagous predatory ground beetle Pterostichus oblongopunctatus, to twelve 1-1,000 mmol l(-1) plant sugars and seven 10-100 mmol l(-1) amino acids were tested. The disaccharides with an alpha-1.4-glycoside linkage, sucrose and maltose, were the two most stimulatory sugars for the sugar-sensitive neuron innervating these contact chemosensilla. The firing rates they evoked were concentration dependent and reached up to 70 impulses/s at 1,000 mmol l(-1). The stimulatory effect of glucose on this neuron was approximately two times lower. This can be partly explained by the fact that glucose exists in at least two anomeric forms, alpha and beta. These two forms interconvert over a timescale of hours in aqueous solution, to a final stable ratio of alpha:beta 36:64, in a process called mutarotation. So the physiologically active alpha-anomere forms only 36% of the glucose solution which was reflected in its relatively low dose/response curve. Due to the partial herbivory of P. oblongopunctatus these plant sugars are probably involved in its search for food, for example, for conifer seeds. Several carbohydrates, in addition to glucose, such as cellobiose, arabinose, xylose, mannose, rhamnose and galactose are known as components of cellulose and hemicelluloses. They are released by brown-rot fungi during enzymatic wood decay. None of them stimulated the antennal sugar-sensitive neuron. They are therefore not implicated in the search for hibernation sites, which include rotting wood, by this beetle. The weak stimulating effect (below 3 impulses/s) of some 100 mmol l(-1) amino acids (methionine, serine, alanine, glutamine) to the 4th chemosensory neuron of these sensilla was characterized as non-specific, or modulating the responses of non-target chemosensory neurons.
Journal of Insect Physiology | 2010
Anne Must; Enno Merivee; Anne Luik; Ingrid H. Williams; Angela Ploomi; Mikk Heidemaa
Responses of the antennal thermosensitive neuron of the ground beetle Platynus assimilis to warming from 20 to 50 degrees C were measured and analysed. During warming, neurons switched from regular spiking to bursting. ISI analysis showed that the number of spikes in the burst and spike frequency within the burst were temperature dependent and may precisely encode unfavourably or dangerously high temperatures in a graded manner. In contrast, regular spikes of the neuron encode moderate temperatures at 20-30 degrees C. The threshold temperature of spike bursting varied in different neurons from 25 to 47 degrees C. As a result, the number of bursting neurons increased with temperature increase. Therefore, in addition to the burst characteristics, the total number of bursting neurons may also contain useful information on external temperature. A relationship between the spike bursts and locomotor activity of the beetles was found which may have importance in behavioural thermoregulation of the species. At 44.4+/-0.6 degrees C, first indications of partial paralysis (of the hind legs) were observed. We emphasize, that in contrast to various sensory systems studied, the thermoreceptor neuron of P. assimilis has a stable and continuous burst train, no temporal information is encoded in the timing of the bursts.
Physiological Entomology | 2012
Enno Merivee; Anne Must; Ene Tooming; Ingrid H. Williams; Ivar Sibul
Using electrophysiology, the stimulating effect of 13 sugars and three sugar alcohols (each at a concentration of 100 mm) to antennal gustatory receptor neurones (GRNs) is tested in the carabid beetle Anchomenus dorsalis (Pontoppidan, 1763) (Coleoptera, Carabidae). Maltose, sucrose, glucose and raffinose are the most stimulating sugars for the sugar‐sensitive neurone (SuN), evoking 6.7–18.6 spikes s−1 in fed insects, whereas the others had little or no effect. The firing rate of the antennal GRNs is not affected by any of the tested sugar alcohols, dulcitol, inositol and sorbitol. Additionally, concentration/response curves for sucrose and maltose are obtained in the range 0.01–100 mm. The responses of beetles starved for 96 h to this range of sucrose are two‐ to three‐fold higher compared with those of fed beetles. The presence of a terminal α‐glucose unit is an important feature of the molecular structure determining the stimulating properties of the two disaccharides, maltose and sucrose, as well as glucose. The other monosaccharide unit of the molecule is also of great importance in determining the stimulating properties of various disaccharides. The sensitivity of the SuN to the four most prevalent aphid honeydew sugars suggests that A. dorsalis uses these chemicals as sensory cues when searching for aphids as prey.
Physiological Entomology | 2011
Marit Milius; Enno Merivee; Anne Must; Ene Tooming; Ingrid H. Williams; Anne Luik
The electrophysiological response of chemoreceptor neurones from the antennal chaetoid taste sensilla of the omnivorous ground beetle Pterostichus oblongopunctatus to several plant alkaloids and glucosides is investigated. A quinine‐sensitive neurone responding to quinine and quinine hydrochloride is found, most probably related to the granivorous feeding habit of P. oblongopunctatus. The response to quinine hydrochloride is concentration‐dependent at 0.001–50 mm, with the response threshold at 0.01 mm and a maximum rate of firing of 67 spikes/s at 50 mm. The stimulatory effect of caffeine is very weak, where the firing rate increases by only 1.4 spikes/s at a concentration of 10 mm compared with that evoked by a control stimulus. In addition, both quinine and quinine hydrochloride strongly inhibit spike production by the salt‐ and pH‐sensitive neurones when presented in mixtures with 10 mm NaCl. Several tested plant secondary compounds (i.e. salicin, sinigrin, caffeine and nicotine), which have only little or no effect on the firing rate of the quinine‐sensitive neurone, greatly reduce the responses of the salt‐ and pH‐sensitive neurones. The results of the present study suggest that the antennal taste sensilla of P. oblongopunctatus may detect plant defensive compounds both through the activation of a quinine‐sensitive neurone and via peripheral inhibition of other chemoreceptor neurones of the taste sensillum.
Physiological Entomology | 2012
Ene Tooming; Enno Merivee; Anne Must; Anne Luik; Ingrid H. Williams
The occurrence of salt‐, sugar‐sensitive neurones and a mechanoreceptor neurone in the antennal hair‐like gustatory sensilla of the click beetle Agriotes obscurus L. (Coleoptera, Elateridae) is demonstrated using the electrophysiological sensillum tip‐recording technique. The stimulating effect of 13 water soluble sugars at 100 mm is tested on the neurones of these sensilla. Sucrose and fructose are the two most stimulating sugars for the sugar‐sensitive neurone, evoking almost 30 spikes s−1 at 100 mm. The stimulating effect of arabinose, glucose, mannose, maltose and raffinose is three‐ to five‐fold lower, in the range 5.9–9.6 spikes s−1. The remaining six sugars, xylose, galactose, rhamnose, cellobiose, trehalose and lactose, have very low (<1 spikes s−1) or no ability to stimulate the sugar‐sensitive neurone. Concentration/response curves of the sugar‐sensitive neurone to sucrose, fructose and glucose at 0.01–100 mm overlap to a large extent in hibernating, cold reactivated and reproductively‐active beetles. A remarkable 9–50% decrease in the number of spikes evoked by 100 mm fructose and 10–100 mm sucrose occurs, however, in reproductively‐active beetles in June compared with beetles at the beginning of hibernation in October. These findings show that A. obscurus is capable of sensing a wide range sugars via their antennal gustatory sensilla.
Journal of Insect Physiology | 2015
Karin Nurme; Enno Merivee; Anne Must; Ivar Sibul; Maurizio Muzzi; Andrea Di Giulio; Ingrid H. Williams; Ene Tooming
Electrophysiological responses of thermo- and hygroreceptor neurons from antennal dome-shaped sensilla of the carabid beetle Pterostichus oblongopunctatus to different levels of steady temperature ranging from 20 to 35°C and rapid step-changes in it were measured and analysed at both constant relative and absolute ambient air humidity conditions. It appeared that both hygroreceptor neurons respond to temperature which means that they are bimodal. For the first time in arthropods, the ability of antennal dry and moist neurons to produce high temperature induced spike bursts is documented. Burstiness of the spike trains is temperature dependent and increases with temperature increase. Threshold temperatures at which the two neurons switch from regular spiking to spike bursting are lower compared to that of the cold neuron, differ and approximately coincide with the upper limit of preferred temperatures of the species. We emphasise that, in contrast to various sensory systems studied, the hygroreceptor neurons of P. oblongopunctatus have stable and continuous burst trains, no temporal information is encoded in the timing of the bursts. We hypothesise that temperature dependent spike bursts produced by the antennal thermo- and hygroreceptor neurons may be responsible for detection of noxious high temperatures important in behavioural thermoregulation of carabid beetles.
Journal of Insect Physiology | 2012
Riin Muljar; Reet Karise; Eneli Viik; Aare Kuusik; Ingrid H. Williams; Luule Metspalu; Külli Hiiesaar; Anne Must; Anne Luik; Marika Mänd
Sublethal effects of pesticides in insects can be observed through physiological changes, which are commonly estimated by metabolic rate and respiratory patterns, more precisely by the patterns of discontinuous gas-exchange (DGE) cycles. The aim of the present research was to study the effect of some low concentrations of Fastac 50 EC on the cycles of CO(2) release and respiratory water loss rates (WLR) in bumble bee Bombus terrestris L. foragers. Bumble bees were dipped into 0.004% and 0.002% Fastac 50 EC solution. Flow-through respirometry was used to record the respiration and WLR 3h before and after the treatment. The respirometry was combined with infrared actography to enable simultaneous recording of abdominal movements. Our results show that Fastac 50 EC has an after-effect on bumble bee respiratory rhythms and muscle activity but does not affect WLR. Treatment with 0.004% Fastac 50 EC solution resulted in disappearance of the respiration cycles; also the lifespan of treated bumble bees was significantly shorter. Treatment with 0.002% Fastac 50 EC solution had no significant effect on respiration patterns or longevity. We found no evidence for the DGE cycles functioning as a water saving mechanism.