Enno Merivee
Estonian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enno Merivee.
Micron | 2002
Enno Merivee; Angela Ploomi; Märt Rahi; José Bresciani; Hans Peter Ravn; Anne Luik; Väino Sammelselg
The arrangement of antennal sensilla was studied in female and male ground beetles Bembidion properans Steph. (Coleoptera, Carabidae) using scanning electron microscopy. The filiform antennae, 1.8-1.9 mm in length, consist of the scape, pedicel and nine flagellomeres. In both sexes, three types of sensilla chaetica, two types of sensilla trichodea, six types of sensilla basiconica, one type of sensilla coeloconica and one type of sensilla campaniformia were distinguished. The possible function of the sensilla is discussed and three types of sensilla are considered olfactory, sensilla trichodea type 2 and sensilla basiconica types 1 and 2. Olfactory sensilla form dorsal and/or ventral sensillar fields on the flagellomeres and occur sparsely or not at all outside these areas. No sexual differences in the types, number and distribution of antennal sensilla were found.
International Journal of Insect Morphology & Embryology | 1999
Enno Merivee; Märt Rahi; Anne Luik
Abstract The typology, number and placement of antennal sensilla of the click beetle Melanotus villosus (Geoffroy) (Coleoptera: Elateridae) were studied using scanning electron microscopy. On both the males and females the antennae are made up of the scape, pedicel and nine flagellomeres. Two types of basiconic sensilla, three types of trichoid sensilla, one type of styloconic sensilla, one type of chetoid sensilla, dome-shaped sensilla, grooved pegs, and Bohm sensilla all appear on the antennae of the beetles of both sexes, with the exception of trichoid sensilla type II, whose large number (average of 1635 hairs per antenna) was found only in male beetles. Sensilla trichodea type II evidently respond to the sex pheromone produced by the female beetle. Unlike the other two click beetles, studied up till now, Agriotes obscurus and Limonius aeruginosus, the trichoid and basiconic sensilla of M. villosus, whose proven or assumed function is olfactory, are located predominantly on the flagellomeres ventral extensions. It is assumed that the placement of the olfactory sensilla, mainly on the ventral side of M. villosuss antennae, and their more or less even distribution on the flagellomeres, can be seen as morphological adaptation of this species of insect, whose specific behavioural reaction of olfactory searching is flying, both before and after contact with an odour plume.
International Journal of Insect Morphology & Embryology | 1998
Enno Merivee; Märt Rahi; José Bresciani; Hans Peter Ravn; Anne Luik
Abstract Antennal sensilla typology, number and distribution of the click beetle Limonius aeruginosus (Olivier) (Coleoptera: Elateridae) were studied using scanning electron microscopy. The serrate antennae of both sexes of L. aeruginosus consist of the scape, pedicel and of the flagellum which is composed of 9 flagellomeres. In both sexes, 5 types of sensilla basiconica, 1 type of sensilla trichodea, 1 type of sensilla chaetica, 1 type of sensilla campaniformia and Bohm sensilla were distinguished. No remarkable sexual differences in the types, numbers and distribution of sensilla were found on the antennae, except for the sensilla basiconica type II. The average number of sensilla basiconica type II on the antennae of the male beetle surpassed that on the antennae of the female beetle (3562 and 108 pegs, respectively). It is suggested that this type of sensilla on the male beetles antennae is responsible for the reception of the sex pheromone produced by the female beetle.
Physiological Entomology | 2005
Enno Merivee; Angela Ploomi; Marit Milius; Anne Luik; Mikk Heidemaa
Abstract. Electrophysiological responses of antennal taste bristles to 100 mm acetate and phosphate buffers were tested at pH 3–11 in the ground beetle Pterostichus oblongopunctatus (F.) (Coleoptera, Carabidae). Additionally, responses of these sensilla to 10 and 100 mm phosphate buffers were compared with each other. Generally, in response to these stimulating solutions, two sensory cells, classified as a salt cell (cation cell) and a pH cell, respectively, showed action potentials distinguished by differences in their amplitudes and polarity of spikes. The firing rate of the cation cell increased with increasing buffer concentration, and was influenced by buffer pH in a complicated way. The best stimulus for the second cell (pH cell) was pH of the stimulating buffer solution. As the pH of the stimulus solution increased, higher rates of firing were produced by the pH cell. For example, the number of action potentials elicited by 100 mm phosphate buffer at pH 11.1 was approximately 16‐fold higher compared with that at pH 8.1, and firing rates during the first second of the response were 27.9 and 1.7 imp/s, respectively. The pH cell did not fire or fired at very low frequency (first second response below 5 imp/s) at pH 3–6. This level of acidity probably represents the pH preferences of this ground beetle in its forest habitat and hibernating sites. By contrast to the cation cell, the pH cell responded to increases in buffer concentration by decreasing its firing rate.
Physiological Entomology | 2003
Enno Merivee; Alo Vanatoa; Anne Luik; Märt Rahi; Väino Sammelselg; Angela Ploomi
Abstract. In single‐sensillum extracellular electrophysiological recordings, terminal campaniform sensilla at the tip of antennae of the ground beetle Pterostichus aethiops (Pz., 1797) show action potentials of three sensory cells, A‐, B‐ and C‐cells, distinguished by differences in their spike amplitudes. Only the A‐cell, with the largest spike amplitude, is highly sensitive to temperature fluctuations, showing remarkable changes in its firing rate induced by changes in temperature of 0.1 °C. The firing rate of A‐cells at 23 °C varies from 15–52 Hz among different beetles. Mean impulse frequency of A‐cells is found to be a function of steady temperature, the firing rate decreasing with temperature increase. A‐cells respond to a rapid temperature drop with a strong phasic‐tonic reaction; larger decreases in temperature evoke higher peak frequency values. Maximum peak frequencies, varying from 380–630 Hz in different beetles, are induced by temperature decreases of 3–10 °C, whereas temperature rise strongly inhibits impulse activity of the A‐cell. The first manifestation of rapid warming in the nerve impulse sequence is a very long interspike period, followed by diminished activity. Both the length of the long interspike period and the rate of following impulse activity are functions of temperature change; hence, A‐cells respond to temperature changes as typical cold receptors, similar to coeloconic and short hair‐like sensilla in other insects.
International Journal of Insect Morphology & Embryology | 1997
Enno Merivee; Märt Rahi; Anne Luik
Abstract The distribution of 5 types of sensilla was statistically analysed on the 4–10th antennal segments of the male click beetle Agriotes obscurus (Coleoptera : Elateridae). The distribution pattern of the trichoid pheromone receptors (T 2 sensilla) and the olfactory basiconic B 1 B 2 sensilla on the antennae of male A. obscurus differs significantly from the distribution pattern of the contact chemoreceptors (T 1 sensilla) and probably the non-olfactory B 7 and D sensilla. A significant peculiarity of the distribution of olfactory sensilla is their location on the antennal segments as 2 separate (dorsal and ventral) fields of sensilla. The numbers of T 2 and B 1 B 2 sensilla on dorsal fields of sensilla of the 4–10th segments increase towards the apex of the antenna nearly linearly. On ventral fields of sensilla of the 4–10th antennal segments, the number of B 1 B 2 sensilla is nearly uniform; the number of T 2 sensilla in the proximal part of the antenna increases towards the apex, but on distal segments of the antenna their number stabilizes. It is characteristic of both the T 2 and to B 1 B 2 sensilla that their numbers are slightly greater on anterior than posterior sides of dorsal sensillar fields, and also greater on posterior than anterior sides of ventral sensillar fields of all antennal segments investigated. We assume that the number of olfactory sensilla on the antennae of male beetles coincides with the distribution of strength of olfactory signal on the antennae of beetles orientating in an odour plume. The distribution patterns of T 2 and B 1 B 2 sensilla of the male A. obscurus can be related to some behavioural peculiarities of olfactory orientation (walking or flying and vibrating of the antennae).
Physiological Entomology | 2006
Anne Must; Enno Merivee; Marika Mänd; Anne Luik; Mikk Heidemaa
Abstract Cold cells innervating antennal campaniform sensilla of the ground beetles Pterostichus oblongopunctatus (Fabricius, 1787) and Poecilus cupreus (Linnaeus, 1758) belonging to the tribe Pterostichini fire at a stationary rate of 22–23 imp s−1 at 23 °C. In P. oblongopunctatus, there is a strong negative correlation between the stationary firing rate of the cold cell and temperature. By contrast, no relationship between the firing rate and temperature is observed in P. cupreus. Mean peak frequencies, reaching up to nearly 500 Hz, and first‐second firing rates, reaching up to 140 imp s−1, are observed at the beginning of the phasic‐tonic response to rapid cooling of the cold cells of P. cupreus, which are significantly higher than those for P. oblongopunctatus. However, firing rates of the cold cells of the two ground beetles studied do not differ 3 s later, during the tonic stabilization period of the response. The length of the long interspike period, lasting up to several seconds, at the beginning of rapid warming, is a positive function of the extent of change in temperature, and is longer in P. oblongopunctatus than in P. cupreus. These differences in the responses of the cold cells are related to the ecological preferences of the two ground beetles.
Journal of Insect Physiology | 2010
Enno Merivee; Anne Must; Anne Luik; Ingrid H. Williams
This study gives the first electrophysiological evidence of hygroreceptors in carabids. Extracellular recordings from the antennal dome-shaped sensilla of the carabid beetle Pterostichus oblolongopunctatus (Coleoptera, Carabidae) clearly show the presence of moist and dry neuron antagonistically responding to humidity changes. The cold neuron of the same sensillum did not respond to changes in humidity. For the first time, we demonstrate that the binary system of two antagonistic hygroreceptor neurons discriminates differences between steady-state humidity levels more sensitively than either neuron separately. Another advantage of the binary system is that it guarantees immediate and strong phasic-tonic response to rapid humidity changes in either direction. In the hygrosensing system of carabids, this would allow detection of subtle step-changes in humidity with greater sensitivity than differences in steady-state values of humidity. Thus, construction of the hygrosensing system with opposing receptor neurons may allow insects to detect environmental humidity differences critical for their habitat and microhabitat selection, and survival with great precision.
Pest Management Science | 2014
Ene Tooming; Enno Merivee; Anne Must; Ivar Sibul; Ingrid H. Williams
BACKGROUND Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. RESULTS Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. CONCLUSION Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field.
Journal of Insect Physiology | 2008
Enno Merivee; Helina Märtmann; Anne Must; Marit Milius; Ingrid H. Williams; Marika Mänd
The responses of antennal contact chemoreceptors, in the polyphagous predatory ground beetle Pterostichus oblongopunctatus, to twelve 1-1,000 mmol l(-1) plant sugars and seven 10-100 mmol l(-1) amino acids were tested. The disaccharides with an alpha-1.4-glycoside linkage, sucrose and maltose, were the two most stimulatory sugars for the sugar-sensitive neuron innervating these contact chemosensilla. The firing rates they evoked were concentration dependent and reached up to 70 impulses/s at 1,000 mmol l(-1). The stimulatory effect of glucose on this neuron was approximately two times lower. This can be partly explained by the fact that glucose exists in at least two anomeric forms, alpha and beta. These two forms interconvert over a timescale of hours in aqueous solution, to a final stable ratio of alpha:beta 36:64, in a process called mutarotation. So the physiologically active alpha-anomere forms only 36% of the glucose solution which was reflected in its relatively low dose/response curve. Due to the partial herbivory of P. oblongopunctatus these plant sugars are probably involved in its search for food, for example, for conifer seeds. Several carbohydrates, in addition to glucose, such as cellobiose, arabinose, xylose, mannose, rhamnose and galactose are known as components of cellulose and hemicelluloses. They are released by brown-rot fungi during enzymatic wood decay. None of them stimulated the antennal sugar-sensitive neuron. They are therefore not implicated in the search for hibernation sites, which include rotting wood, by this beetle. The weak stimulating effect (below 3 impulses/s) of some 100 mmol l(-1) amino acids (methionine, serine, alanine, glutamine) to the 4th chemosensory neuron of these sensilla was characterized as non-specific, or modulating the responses of non-target chemosensory neurons.