Anne-Nathalie Volkoff
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Nathalie Volkoff.
Science | 2009
Annie Bézier; Marc Annaheim; Juline Herbinière; Christoph Wetterwald; Gabor Gyapay; Sylvie Bernard-Samain; Patrick Wincker; Isabel Roditi; Manfred Heller; Maya Belghazi; Rita Pfister-Wilhem; Georges Periquet; Catherine Dupuy; Elisabeth Huguet; Anne-Nathalie Volkoff; Beatrice Lanzrein; Jean-Michel Drezen
Many species of parasitoid wasps inject polydnavirus particles in order to manipulate host defenses and development. Because the DNA packaged in these particles encodes almost no viral structural proteins, their relation to viruses has been debated. Characterization of complementary DNAs derived from braconid wasp ovaries identified genes encoding subunits of a viral RNA polymerase and structural components of polydnavirus particles related most closely to those of nudiviruses—a sister group of baculoviruses. The conservation of this viral machinery in different braconid wasp lineages sharing polydnaviruses suggests that parasitoid wasps incorporated a nudivirus-related genome into their own genetic material. We found that the nudiviral genes themselves are no longer packaged but are actively transcribed and produce particles used to deliver genes essential for successful parasitism in lepidopteran hosts.
Scientific Reports | 2017
Anaïs Gouin; Anthony Bretaudeau; Kiwoong Nam; Sylvie Gimenez; Jean-Marc Aury; Bernard Duvic; Frédérique Hilliou; Nicolas Durand; Nicolas Montagné; Isabelle Darboux; Suyog S. Kuwar; Thomas Chertemps; David Siaussat; Anne Bretschneider; Yves Moné; Seung-Joon Ahn; Sabine Hänniger; Anne-Sophie Gosselin Grenet; David Neunemann; Florian Maumus; Isabelle Luyten; Karine Labadie; Wei Xu; Fotini Koutroumpa; Jean-Michel Escoubas; Angel Llopis; Martine Maïbèche-Coisne; Fanny Salasc; Archana Tomar; Alisha Anderson
Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.
PLOS Pathogens | 2010
Anne-Nathalie Volkoff; Véronique Jouan; Serge Urbach; Sylvie Samain; Max Bergoin; Patrick Wincker; Edith Demettre; François Cousserans; Bertille Provost; Fasséli Coulibaly; Fabrice Legeai; Catherine Béliveau; Michel Cusson; Gabor Gyapay; Jean-Michel Drezen
Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.
BMC Bioinformatics | 2006
Vincent Negre; Thierry Hotelier; Anne-Nathalie Volkoff; Sylvie Gimenez; François Cousserans; Kazuei Mita; Xavier Sabau; Janick Rocher; Miguel López-Ferber; Emmanuelle D'Alençon; Pascaline Audant; Cécile Sabourault; Vincent Bidegainberry; Frédérique Hilliou; Philippe Fournier
BackgroundThe Lepidoptera Spodoptera frugiperda is a pest which causes widespread economic damage on a variety of crop plants. It is also well known through its famous Sf9 cell line which is used for numerous heterologous protein productions. Species of the Spodoptera genus are used as model for pesticide resistance and to study virus host interactions. A genomic approach is now a critical step for further new developments in biology and pathology of these insects, and the results of ESTs sequencing efforts need to be structured into databases providing an integrated set of tools and informations.DescriptionThe ESTs from five independent cDNA libraries, prepared from three different S. frugiperda tissues (hemocytes, midgut and fat body) and from the Sf9 cell line, are deposited in the database. These tissues were chosen because of their importance in biological processes such as immune response, development and plant/insect interaction. So far, the SPODOBASE contains 29,325 ESTs, which are cleaned and clustered into non-redundant sets (2294 clusters and 6103 singletons). The SPODOBASE is constructed in such a way that other ESTs from S. frugiperda or other species may be added. User can retrieve information using text searches, pre-formatted queries, query assistant or blast searches. Annotation is provided against NCBI, UNIPROT or Bombyx mori ESTs databases, and with GO-Slim vocabulary.ConclusionThe SPODOBASE database provides integrated access to expressed sequence tags (EST) from the lepidopteran insect Spodoptera frugiperda. It is a publicly available structured database with insect pest sequences which will allow identification of a number of genes and comprehensive cloning of gene families of interest for scientific community. SPODOBASE is available from URL: http://bioweb.ensam.inra.fr/spodobase
BMC Genomics | 2006
Barat-Houari M; Frédérique Hilliou; Jousset Fx; Sofer L; Emeline Deleury; Rocher J; Marc Ravallec; Galibert L; Pierre Delobel; René Feyereisen; Philippe Fournier; Anne-Nathalie Volkoff
BackgroundGenomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV.ResultsResults show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses).ConclusionThis analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses.
Gene | 2003
Anne-Nathalie Volkoff; Janick Rocher; Emmanuelle d'Alençon; Martine Bouton; Igor Landais; Enrique Quesada-Moraga; Alain Vey; Philippe Fournier; Kazuei Mita; Gérard Devauchelle
The present work describes sequence and transcription of three Spodoptera frugiperda genes encoding 6-cysteine-rich peptides. Sequence alignments indicate that the predicted peptides belong to the insect defensin family, although phylogenetic analyses suggest they form a cluster distinct from that of other neopteran insect defensins. The three genes were identified in a non-immune-challenged Sf9 cells cDNA (DNA complementary to RNA) library (Landais et al., Bioinformatics, in press) and were named spodoptericin, Sf-gallerimycin and Sf-cobatoxin. Spodoptericin is a novel defensin-like gene that appears to be weakly up-regulated following injection of bacteria and fungi. Interestingly, no sequence motif clearly homologous to cis regulatory element involved in the regulation of antimicrobial genes was found. An homologue of the spodoptericin gene was identified in the SilkBase Bombyx mori cDNA library. Sf-gallerimycin is related to the Galleria mellonella gallerimycin gene and is induced after immune challenge by injection of bacteria in the larval fat body as well as in hemocytes. In silico analysis of the sequence upstream from the cDNA reveals the presence of at least one motif homologous to a nuclear factor kappaB (NF-kappaB) binding site. Finally, Sf-cobatoxin is related to the G. mellonella cobatoxin-like gene. Despite high levels of constitutive expression compared to the two previous genes, transcription of Sf-cobatoxin is increased after immune, in particular, bacterial challenge. We therefore confirm that these three genes encode potential candidate molecules involved in S. frugiperda innate humoral response.
Proceedings of the Royal Society of London B: Biological Sciences | 2015
Nolwenn M. Dheilly; Fanny Maure; Marc Ravallec; Richard Galinier; Josée Doyon; David Duval; Lucas Léger; Anne-Nathalie Volkoff; Dorothée Missé; Sabine Nidelet; Vincent Demolombe; Jacques Brodeur; Benjamin Gourbal; Frédéric Thomas; Guillaume Mitta
Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the hosts nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated.
Biological Chemistry | 2009
Céline Serbielle; Sébastien J.M. Moreau; Florian Veillard; Emilien Voldoire; Annie Bézier; Marie-Anne Mannucci; Anne-Nathalie Volkoff; Jean-Michel Drezen; Gilles Lalmanach; Elisabeth Huguet
Abstract Parasites have evolved different virulence strategies to manipulate host physiological functions. The parasitoid wasp Cotesia congregata induces developmental arrest and immune suppression of its Lepidopteran host Manduca sexta. In this interaction, a symbiotic virus (C. congregata Bracovirus, CcBV) associated with the wasp is essential for parasitism success. The virus is injected into the host with wasp eggs and virus genes are expressed in host tissues. Among potential CcBV virulence genes, cystatins, which are tight binding inhibitors of C1A cysteine proteases, are suspected to play an important role in the interaction owing to their high level of expression. So far, however, potential in vivo targets in M. sexta are unknown. Here, we characterized for the first time four M. sexta C1A cysteine proteases corresponding to cathepsin L and cathepsin B and two different ‘26–29 kDa’ cysteine proteases (MsCath1 and MsCath2). Our analyses revealed that MsCath1 and MsCath2 are transcriptionally downregulated in the course of parasitism. Moreover, viral Cystatin1 and MsCath1 co-localize in the plasma following parasitism, strongly suggesting that they interact. We also show that parasitism induces a general increase of cysteine protease activity which is later controlled. The potential involvement of cysteine proteases in defense against parasitoids is discussed.
Current Biology | 2005
Matthew W. Turnbull; Anne-Nathalie Volkoff; Bruce A. Webb; Pauline Phelan
Ichnoviruses belong to the virus family Polydnaviridae, whose members are obligately associated with certain endoparasitoid wasps. Expression of ichnovirus genes in parasitized lepidopteran hosts leads to immune suppression and is essential for successful parasitization. To date, the role of specific ichnovirus genes in alteration of host physiology has been unclear, and no cellular homologues have been described. Here, we describe the isolation of a gene family from two ichnoviruses that is homologous to the innexin gene family, which encodes gap junctions in invertebrates. Campoletis sonorensis ichnovirus (CsIV) innexins are expressed in multiple tissues in infected lepidopterans, including haemocytes, the primary immunocytes of the host. Two of the CsIV proteins have been expressed and shown to form functional gap junctions in Xenopus oocytes. To our knowledge this is the first study to describe gap junction genes in any virus. We hypothesize that the virus innexins disrupt cellular immunity in infected insects by altering normal gap junctional intercellular communication. This would represent a novel mechanism of viral alteration of host physiology, and suggests that gap junctions play a crucial role in coordinating cellular immune responses.
Journal of Insect Physiology | 2003
L Galibert; J. Rocher; Marc Ravallec; M. Duonor-Cérutti; Bruce A. Webb; Anne-Nathalie Volkoff
We present in this work two novel Hyposoter didymator ichnovirus genes expressed in parasitized Spodoptera larvae. These genes, named HdCorfS6 and HdGorfP30, are unrelated and present in two different genome segments, possibly nested, SH-C and SH-G respectively. HdCorfS6 encodes a predicted transmembrane protein, putatively glycosylated. HdCorfS6 transcripts appear to be abundant in lepidopteran host hemocytes compared to the other tissues analyzed. The second gene described, HdGorfP30, is well expressed in hemocytes, but also in other tissues, such as the fat body, nervous system and epidermis. This gene is peculiar since it presents 17 perfectly conserved repeated sequences arranged in tandem arrays. Each of these repeats contains 58% of serine and threonine residues and therefore several potential sites for glycosylation. This mucin-like protein, predicted as highly glycosylated, could be involved in host immune suppression.