Marc Ravallec
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Ravallec.
BMC Genomics | 2006
Barat-Houari M; Frédérique Hilliou; Jousset Fx; Sofer L; Emeline Deleury; Rocher J; Marc Ravallec; Galibert L; Pierre Delobel; René Feyereisen; Philippe Fournier; Anne-Nathalie Volkoff
BackgroundGenomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV.ResultsResults show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses).ConclusionThis analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses.
Proceedings of the Royal Society of London B: Biological Sciences | 2015
Nolwenn M. Dheilly; Fanny Maure; Marc Ravallec; Richard Galinier; Josée Doyon; David Duval; Lucas Léger; Anne-Nathalie Volkoff; Dorothée Missé; Sabine Nidelet; Vincent Demolombe; Jacques Brodeur; Benjamin Gourbal; Frédéric Thomas; Guillaume Mitta
Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the hosts nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated.
PLOS ONE | 2011
Laurent Gauthier; Marc Ravallec; Magali Tournaire; François Cousserans; Max Bergoin; Benjamin Dainat; Joachim R. de Miranda
Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queens fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology.
Journal of Virology | 2009
Agnès Vendeville; Marc Ravallec; Françoise-Xavière Jousset; Micheline Devise; Doriane Mutuel; Miguel López-Ferber; Philippe Fournier; Thierry Dupressoir; Mylène Ogliastro
ABSTRACT Junonia coenia densovirus (JcDNV) is an ambisense insect parvovirus highly pathogenic for lepidopteran pests at larval stages. The potential use of DNVs as biological control agents prompted us to reinvestigate the host range and cellular mechanisms of infection. In order to understand the early events of infection, we set up a functional infection assay in a cell line of the pest Lymantria dispar to determine the intracellular pathway undertaken by JcDNV to infect a permissive lepidopteran cell line. Our results show that JcDNV particles are rapidly internalized into clathrin-coated vesicles and slowly traffic within early and late endocytic compartments. Blocking late-endocytic trafficking or neutralizing the pH with drugs inhibited infection. During internalization, disruption of the cytoskeleton, and inhibition of phosphatidylinositol 3-kinase blocked the movement of vesicles containing the virus to the nucleus and impaired infection. In summary, our results define for the first time the early endocytic steps required for a productive DNV infection.
Journal of Insect Physiology | 2003
L Galibert; J. Rocher; Marc Ravallec; M. Duonor-Cérutti; Bruce A. Webb; Anne-Nathalie Volkoff
We present in this work two novel Hyposoter didymator ichnovirus genes expressed in parasitized Spodoptera larvae. These genes, named HdCorfS6 and HdGorfP30, are unrelated and present in two different genome segments, possibly nested, SH-C and SH-G respectively. HdCorfS6 encodes a predicted transmembrane protein, putatively glycosylated. HdCorfS6 transcripts appear to be abundant in lepidopteran host hemocytes compared to the other tissues analyzed. The second gene described, HdGorfP30, is well expressed in hemocytes, but also in other tissues, such as the fat body, nervous system and epidermis. This gene is peculiar since it presents 17 perfectly conserved repeated sequences arranged in tandem arrays. Each of these repeats contains 58% of serine and threonine residues and therefore several potential sites for glycosylation. This mucin-like protein, predicted as highly glycosylated, could be involved in host immune suppression.
Science Advances | 2015
Apolline Pichon; Annie Bézier; Serge Urbach; Jean-Marc Aury; Véronique Jouan; Marc Ravallec; Julie Guy; François Cousserans; Julien Thézé; Jérémy Gauthier; Edith Demettre; Sandra Schmieder; François Wurmser; Vonick Sibut; Marylène Poirié; Dominique Colinet; Corinne Da Silva; Arnaud Couloux; Valérie Barbe; Jean-Michel Drezen; Anne-Nathalie Volkoff
Virus domestication is a recurrent and beneficial process in the evolution of parasitic wasps. Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce “liposomes” that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.
Journal of General Virology | 2016
Julien Martinez; David Lepetit; Marc Ravallec; Frédéric Fleury; Julien Varaldi
Parasitoid wasps can be found in association with heritable viruses. Although some viruses have been shown to profoundly affect the biology and evolution of parasitoid wasps, the genetic and phenotypic diversity of parasitoid-associated viruses remains largely unexplored. We previously discovered a behaviour-manipulating DNA virus in the parasitoid wasp Leptopilina boulardi. In this species, which lays its eggs inside Drosophila larvae, Leptopilina boulardi filamentous virus (LbFV) forces the females to lay their eggs in already parasitized Drosophila larvae. This behavioural manipulation increases the chances for the horizontal transmission of the virus. Here, we describe in the same parasitoid species another virus, which we propose to call Leptopilina boulardi toti-like virus (LbTV). This double-stranded RNA virus is highly prevalent in insect laboratory lines as well as in parasitoids caught in the field. In some cases, LbTV was found in coinfection with LbFV, but did not affect the behaviour of the wasp. Instead we found that the presence of LbTV correlates with an increase in the number of offspring, mostly due to increased survival of parasitoid larvae. LbTV is vertically transmitted mostly through the maternal lineage even if frequent paternal transmission also occurs. Unlike LbFV, LbTV is not horizontally transmitted. Its genome encodes a putative RNA-dependent RNA polymerase (RdRp) showing similarities with RdRps of Totiviridae. These results underline the high incidence and diversity of inherited viruses in parasitoids as well as their potential impact on the phenotype of their hosts.
Journal of Insect Physiology | 2013
Tristan Dorémus; Véronique Jouan; Serge Urbach; François Cousserans; Patrick Wincker; Marc Ravallec; Eric Wajnberg; Anne-Nathalie Volkoff
An endoparasitic life style is widespread among Hymenoptera, and various different strategies allowing parasitoids to escape from the host encapsulation response have been reported. Species carrying polydnaviruses (PDVs), such as the ichneumonid Hyposoter didymator, generally rely on the viral symbionts to evade host immune responses. In this work, we show that H. didymator eggs can evade encapsulation by the host in the absence of calyx fluid (containing the viral particles), whereas protection of the larvae requires the presence of calyx fluid. This evasion by the eggs depends on proteins associated with the exochorion. This type of local passive strategy has been described for a few species carrying PDVs. Immune evasion by braconid eggs appears to be related to PDVs or proteins synthesized in the oviducts being associated with the egg. We report that in H. didymator, by contrast, proteins already present in the ovarian follicles are responsible for the eggs avoiding encapsulation. Mass spectrometry analysis of the egg surface proteins revealed the presence of host immune-related proteins, including one with similarities with apolipophorin-III, and also the presence of three viral proteins encoded by IVSPERs (Ichnovirus Structural Protein Encoding Regions).
PLOS ONE | 2011
Gabriel Clavijo; Tristan Dorémus; Marc Ravallec; Marie-Anne Mannucci; Véronique Jouan; Anne-Nathalie Volkoff; Isabelle Darboux
The viral ankyrin (vankyrin) gene family is represented in all polydnavirus (PDVs) genomes and encodes proteins homologous to I-kappaBs, inhibitors of NF-kappaB transcription factors. The structural similarities led to the hypothesis that vankyrins mimic eukaryotic factors to subvert important physiological pathways in the infected host. Here, we identified nine vankyrin genes in the genome of the Hyposoter didymator Ichnovirus (HdIV). Time-course gene expression experiments indicate that all members are expressed throughout parasitism of Spodoptera frugiperda, as assessed using RNA extracted from whole larvae. To study tissue and/or species specificity transcriptions, the expression of HdIV vankyrin genes were compared between HdIV-injected larvae of S. frugiperda and S. littoralis. The transcriptional profiles were similar in the two species, including the largely predominant expression of Hd27-vank1 in all tissues examined. However, in various insect cell lines, the expression patterns of HdIV vankyrins differed according to species. No clear relationship between vankyrin expression patterns and abundance of vankyrin-bearing genomic segments were found in the lepidopteran cell lines. Moreover, in these cells, the amount of vankyrin-bearing genomic segments differed substantially between cytosol and nuclei of infected cells, implying the existence of an unexpected step regulating the copy number of HdIV segments in cell nuclei. Our in vitro results reveal a host-specific transcriptional profile of vankyrins that may be related to the success of parasitism in different hosts. In Spodoptera hosts, the predominant expression of Hd27-vank1 suggests that this protein might have pleiotropic functions during parasitism of these insect species.
Scientific Reports | 2016
Hugo Mathé-Hubert; Dominique Colinet; Emeline Deleury; Maya Belghazi; Marc Ravallec; Julie Poulain; Carole Dossat; Marylène Poirié; Jean-Luc Gatti
Venom composition of parasitoid wasps attracts increasing interest – notably molecules ensuring parasitism success on arthropod pests – but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range. Among the shared abundant proteins, we found a GH1 β-glucosidase and a family of leucine-rich repeat (LRR) proteins. Olive is extremely rich in glycoside compounds that are hydrolyzed by β-glucosidases into defensive toxic products in response to phytophagous insect attacks. Assuming that Psyttalia host larvae sequester ingested glycosides, the injected venom GH1 β-glucosidase could induce the release of toxic compounds, thus participating in parasitism success by weakening the host. Venom LRR proteins are similar to truncated Toll-like receptors and may possibly scavenge the host immunity. The abundance of one of these LRR proteins in the venom of only one of the two P. lounsburyi strains evidences intraspecific variation in venom composition. Altogether, venom intra- and inter-specific variation in Psyttalia spp. were much lower than previously reported in the Leptopilina genus (Figitidae), suggesting it might depend upon the parasitoid taxa.