Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Ortiz-Julien is active.

Publication


Featured researches published by Anne Ortiz-Julien.


Metabolic Engineering | 2011

Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway

Axelle Cadière; Anne Ortiz-Julien; Carole Camarasa; Sylvie Dequin

Amplification of the flux toward the pentose phosphate (PP) pathway might be of interest for various S. cerevisiae based industrial applications. We report an evolutionary engineering strategy based on a long-term batch culture on gluconate, a substrate that is poorly assimilated by S. cerevisiae cells and is metabolized by the PP pathway. After adaptation for various periods of time, we selected strains that had evolved a greater consumption capacity for gluconate. (13)C metabolic flux analysis on glucose revealed a redirection of carbon flux from glycolysis towards the PP pathway and a greater synthesis of lipids. The relative flux into the PP pathway was 17% for the evolved strain (ECA5) versus 11% for the parental strain (EC1118). During wine fermentation, the evolved strains displayed major metabolic changes, such as lower levels of acetate production, higher fermentation rates and enhanced production of aroma compounds. These represent a combination of novel traits, which are of great interest in the context of modern winemaking.


Applied and Environmental Microbiology | 2014

Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.

Valentin Tilloy; Anne Ortiz-Julien; Sylvie Dequin

ABSTRACT There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wines sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network.


Applied Microbiology and Biotechnology | 2015

Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation

Stéphanie Rollero; Audrey Bloem; Carole Camarasa; Isabelle Sanchez; Anne Ortiz-Julien; Jean-Marie Sablayrolles; Sylvie Dequin; Jean-Roch Mouret

Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box–Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas–liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.


Food Microbiology | 2012

Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution

Axelle Cadière; Evelyne Aguera; Soline Caillé; Anne Ortiz-Julien; Sylvie Dequin

In the competitive context of the wine market, there is a growing interest for novel wine yeast strains that have an overall good fermentation capacity and that contribute favorably to the organoleptic quality of wine. Using an adaptive evolution strategy based on growth on gluconate as sole carbon source, we recently obtained wine yeasts with improved characteristics in laboratory-scale fermentations. The characteristics included enhanced fermentation rate, decreased formation of acetate and greater production of fermentative aroma. We report an evaluation of the potential value of the evolved strain ECA5™ for winemaking, by comparing its fermentation performance and metabolite production to those of the parental strain in pilot-scale fermentation trials, with various grape cultivars and winemaking conditions. We show that the evolved strain has outstanding attributes relative to the parental wine yeast strain, and in particular the production of less volatile acidity and greater production of desirable volatile esters, important for the fruity/flowery character of wines. This study highlights the potential of evolutionary engineering for the generation of strains with a broad range of novel properties, appropriate for rapid application in the wine industry.


Microbial Biotechnology | 2017

Quantitative 13C‐isotope labelling‐based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation

Stéphanie Rollero; Jean-Roch Mouret; Audrey Bloem; Isabelle Sanchez; Anne Ortiz-Julien; Jean-Marie Sablayrolles; Sylvie Dequin; Carole Camarasa

Nitrogen and lipids are key nutrients of grape must that influence the production of fermentative aromas by wine yeast, and we have previously shown that a strong interaction exists between these two nutrients. However, more than 90% of the acids and higher alcohols (and their acetate ester derivatives) were derived from intermediates produced by the carbon central metabolism (CCM). The objective of this study was to determine how variations in nitrogen and lipid resources can modulate the contribution of nitrogen and carbon metabolisms for the production of fermentative aromas. A quantitative analysis of metabolism using 13C‐labelled leucine and valine showed that nitrogen availability affected the part of the catabolism of N‐containing compounds, the formation of α‐ketoacids from CCM and the redistribution of fluxes around these precursors, explaining the optimum production of higher alcohols occurring at an intermediate nitrogen content. Moreover, nitrogen content modulated the total production of acids and higher alcohols differently, through variations in the redox state of cells. We also demonstrated that the phytosterol content, modifying the intracellular availability of acetyl‐CoA, can influence the flux distribution, especially the formation of higher alcohols and the conversion of α‐ketoisovalerate to α‐ketoisocaproate.


Microbial Cell Factories | 2016

Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.

Stéphanie Rollero; Jean-Roch Mouret; Isabelle Sanchez; Carole Camarasa; Anne Ortiz-Julien; Jean-Marie Sablayrolles; Sylvie Dequin

BackgroundFermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5.ResultsNitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols).ConclusionsAn integrated approach to yeast metabolism—combining transcriptomic analyses and online monitoring data—showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.


Frontiers in Microbiology | 2018

Altered fermentation performances, growth, and metabolic footprints reveal competition for nutrients between yeast species inoculated in synthetic grape juice-like medium

Stéphanie Rollero; Audrey Bloem; Anne Ortiz-Julien; Carole Camarasa; Benoit Divol

The sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species (Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae, that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae. The metabolic footprint of the non-Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae. For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner.


Food Research International | 2018

Pre-fermentative cold maceration in presence of non-Saccharomyces strains: Evolution of chromatic characteristics of Sangiovese red wine elaborated by sequential inoculation

Ilaria Benucci; Martina Cerreti; Katia Liburdi; Tiziana Nardi; Paola Vagnoli; Anne Ortiz-Julien; Marco Esti

Two different Metschnikowia strains (M. pulcherrima MP 346 or M. fructicola MF 98-3) were applied for the first time, during pre-fermentative cold maceration (PCM) in order to enhance the properties and stability of Sangiovese wine color. During the 2014 and 2015 vintages a total of eight wines were produced with 24 h of cold maceration (PCM 24 h) or 72 h (PCM 72 h), respectively. PCM was carried out in presence of MP 346 or MF 98-3 or pectic enzyme (Cuvée Rouge). The sequential inoculation of S. cerevisiae strain was carried out at the end of PCM. After 12 months in the bottle, the MP 346 and MF 98-3 wines contained much higher levels of total flavonoids than the Control sample for both vintages and regardless PCM duration. Moreover, in both vintages only MF 98-3 showed a higher color intensity than the Control sample after 12 months in the bottle. However, neither PCM duration nor the microbial/enzymatic treatment increased the level of anthocyanins at draining off. Both wines produced by the pre-fermentative inoculum with Metschnikowia strains (MP 346 and MF 98-3) retained their red hue, regardless the duration of pre-fermentative and fermentative macerations, while the Control wines were characterized by faster rates of color loss.


Fems Yeast Research | 2018

Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences

Stéphanie Rollero; Audrey Bloem; Anne Ortiz-Julien; Carole Camarasa; Benoit Divol

Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilisation of nitrogen sources and the volatile compound production of 10 strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juices nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and γ-aminobutyric acid) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.


Applied and Environmental Microbiology | 2018

Specific phenotypic traits of Starmerella bacillaris regarding nitrogen source consumption and central carbon metabolites production during wine fermentation

Vasileios Englezos; Luca Cocolin; Kalliopi Rantsiou; Anne Ortiz-Julien; Audrey Bloem; Sylvie Dequin; Carole Camarasa

Mixed fermentations using a controlled inoculation of Starmerella bacillaris and Saccharomyces cerevisiae starter cultures represent a feasible way to modulate wine composition that takes advantage of both the phenotypic specificities of the non-Saccharomyces strain and the ability of S. cerevisiae to complete wine fermentation. However, according to the composition of grape juices, the consumption by Starm. bacillaris of nutrients, in particular of nitrogen sources, during the first stages of the process may result in depletions that further limit the growth of S. cerevisiae and lead to stuck or sluggish fermentations. Consequently, understanding the preferences of non-Saccharomyces yeasts for the nitrogen sources available in grape must together with their phenotypic specificities is essential for an efficient implementation of sequential wine fermentations with Starm. bacillaris and S. cerevisiae species. The results of our study demonstrate a clear preference for ammonium compared to amino acids for the non-Saccharomyces species. This finding underlines the importance of nitrogen sources, which modulate the functional characteristics of inoculated yeast strains to better control the fermentation process and product quality. ABSTRACT Over the last few years, the potential of non-Saccharomyces yeasts to improve the sensory quality of wine has been well recognized. In particular, the use of Starmerella bacillaris in mixed fermentations with Saccharomyces cerevisiae was reported as an appropriate way to enhance glycerol formation and reduce ethanol production. However, during sequential fermentation, many factors, such as the inoculation timing, strain combination, and physical and biochemical interactions, can affect yeast growth, the fermentation process, and/or metabolite synthesis. Among them, the availability of yeast-assimilable nitrogen (YAN), due to its role in the control of growth and fermentation, has been identified as a key parameter. Consequently, a comprehensive understanding of the metabolic specificities and the nitrogen requirements would be valuable to better exploit the potential of Starm. bacillaris during wine fermentation. In this study, marked differences in the consumption of the total and individual nitrogen sources were registered between the two species, while the two Starm. bacillaris strains generally behaved uniformly. Starm. bacillaris strains are differentiated by their preferential uptake of ammonium compared with amino acids that are poorly assimilated or even produced (alanine). Otherwise, the non-Saccharomyces yeast exhibits low activity through the acetaldehyde pathway, which triggers an important redistribution of fluxes through the central carbon metabolic network. In particular, the formation of metabolites deriving from the two glycolytic intermediates glyceraldehyde-3-phosphate and pyruvate is substantially increased during fermentations by Starm. bacillaris. This knowledge will be useful to better control the fermentation process in mixed fermentation with Starm. bacillaris and S. cerevisiae. IMPORTANCE Mixed fermentations using a controlled inoculation of Starmerella bacillaris and Saccharomyces cerevisiae starter cultures represent a feasible way to modulate wine composition that takes advantage of both the phenotypic specificities of the non-Saccharomyces strain and the ability of S. cerevisiae to complete wine fermentation. However, according to the composition of grape juices, the consumption by Starm. bacillaris of nutrients, in particular of nitrogen sources, during the first stages of the process may result in depletions that further limit the growth of S. cerevisiae and lead to stuck or sluggish fermentations. Consequently, understanding the preferences of non-Saccharomyces yeasts for the nitrogen sources available in grape must together with their phenotypic specificities is essential for an efficient implementation of sequential wine fermentations with Starm. bacillaris and S. cerevisiae species. The results of our study demonstrate a clear preference for ammonium compared to amino acids for the non-Saccharomyces species. This finding underlines the importance of nitrogen sources, which modulate the functional characteristics of inoculated yeast strains to better control the fermentation process and product quality.

Collaboration


Dive into the Anne Ortiz-Julien's collaboration.

Top Co-Authors

Avatar

Sylvie Dequin

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Carole Camarasa

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Torchio

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Bloem

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge