Anne Truong
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Truong.
Annals of the New York Academy of Sciences | 2009
Shu Feng; Alberto Ferlin; Anne Truong; Ross A. D. Bathgate; John D. Wade; Sean T. Corbett; Shuo Han; Mounia Tannour-Louet; Dolores J. Lamb; Carlo Foresta; Alexander I. Agoulnik
Mutations of the insulin‐like peptide 3 (INSL3) hormone or its receptor, RXFP2, cause intraabdominal cryptorchidism in male mice. Specific RXFP2 expression in mouse gubernacula was detected at embryonic day 14.5 and markedly increased after birth in the developing cremaster muscle, as well as in the epididymis and testicular Leydig and germ cells. INSL3 treatment stimulated cell proliferation of embryonic gubernacular and Leydig cells, implicating active INSL3‐mediated signaling. The transcription factor SOX9, a known male sex determination factor, upregulated the activity of the RXFP2 promoter. INSL3 is sufficient to direct the first transabdominal phase of testicular descent in the absence of hypothalamic–pituitary–gonadal axis signaling or Hoxa10, although these factors are important for inguinoscrotal testicular descent. Similarly, conditional ablation of the androgen receptor gene in gubernacular cells resulted in disruption of inguinoscrotal descent. We performed mutation screening of INSL3 and RXFP2 in human patients with cryptorchidism and control subjects from different populations in Europe and the USA. Several missense mutations were described in both the INSL3 and RXFP2 genes. A novel V39G INSL3 mutation in a patient with cryptorchidism was identified; however, the functional analysis of the mutant peptide did not reveal compromised function. In more than 2000 patients and controls analyzed to date, the T222P RXFP2 mutation is the only one strongly associated with the mutant phenotype. The T222P mutant receptor, when transfected into 293T cells, had severely decreased cell membrane expression, providing the basis for the functional deficiency of this mutation.
Endocrine-related Cancer | 2010
Shu Feng; Irina U. Agoulnik; Anne Truong; Zhen Li; Chad J. Creighton; Elena M. Kaftanovskaya; Rhea Pereira; Hee Dong Han; Gabriel Lopez-Berestein; Thomas Klonisch; Michael Ittmann; Anil K. Sood; Alexander I. Agoulnik
Relaxin (RLN) is a small peptide hormone expressed in several cancers of reproductive and endocrine organs. Increased expression of RLN in prostate cancer correlates with aggressive cancer. RLN G-protein-coupled receptor (RLN family peptide receptor 1, RXFP1) is expressed in both androgen receptor (AR)-positive and -negative prostate cancers as well as in prostate cancer cell lines. RLN behaves as a cell growth factor and increases invasiveness and proliferation of cancer cells in vitro and in vivo. The objective of this study is to determine whether downregulation of RXFP1 expression using small interfering RNA (siRNA) reduces cancer growth and metastasis in a xenograft model of prostate cancer. We used two well-characterized prostate adenocarcinoma cell lines, AR-positive LNCaP cells and AR-negative PC3 cells. The tumors were established in nude male mice by s.c. injections. Intratumoral injections of siRNAs loaded on biodegradable chitosan nanoparticles led to a downregulation of RXFP1 receptor expression and a dramatic reduction in tumor growth. In LNCaP tumors, the siRNA treatment led to an extensive necrosis. In PC3 xenografts treated with siRNA against RXFP1, the smaller tumor size was associated with the decreased cell proliferation and increased apoptosis. The downregulation of RXFP1 resulted in significant decrease in metastasis rate in PC3 tumors. Global transcriptional profiling of PC3 cells treated with RXFP1 siRNA revealed genes with significantly altered expression profiles previously shown to promote tumorigenesis, including the downregulation of MCAM, MUC1, ANGPTL4, GPI, and TSPAN8. Thus, the suppression of RLN/RXFP1 may have potential therapeutic benefits in prostate cancer.
Biology of Reproduction | 2007
Shu Feng; Natalia V. Bogatcheva; Anne Truong; Borys Korchin; Colin E. Bishop; Thomas Klonisch; Irina U. Agoulnik; Alexander I. Agoulnik
Abstract The mutations of testicular insulin-like 3 (INSL3) hormone or its receptor RXFP2 cause cryptorchidism in male mice. Here we have examined Rxfp2 gene expression at different stages of embryonic and postnatal mouse development in male reproductive tissues employing quantitative RT-PCR and several RXFP2-specific antibodies directed toward different parts of the RXFP2 protein. Receptor expression was markedly increased after birth and was readily detectable in the epididymis, Leydig cells, and germ cells of the testis. The strongest expression was detected in adult mouse cremaster muscle. INSL3 treatment increased cell proliferation of embryonic gubernacular and TM3 embryonic Leydig cells, implicating active INSL3-mediated autocrine signaling in these cells and identifying TM3 as a novel in vitro model to study the effects of RXFP2 signaling. We generated Tg(Rxfp2-cre)Aia (Rxfp2-iCre) transgenic mice expressing improved Cre recombinase (iCre) under the control of the 2.4-kb mouse Rxfp2 promoter. The iCre was expressed in the gubernacular ligament at E14.5, indicating that this promoter is able to drive Rxfp2 gene expression during transabdominal testis descent. We demonstrated that the transcription factor Sox9, a known male sex determination factor, is expressed in mouse embryonic gubernacula and upregulated human, but not mouse, promoter luciferase reporter constructs. In conclusion, we have determined the developmental expression profile of INSL3 receptor employing newly characterized RXFP2 antisera and a novel Rxfp2-iCre transgenic mouse model. We determined the promoter region capable of providing the gubernacular-specific expression of Rxfp2. Analysis of RXFP2 promoter identified SOX9 as a new transcriptional enhancer of human gene expression.
The Journal of Urology | 2006
Shu Feng; Natalia V. Bogatcheva; Anne Truong; Wolfgang Engel; Ibrahim M. Adham; Alexander I. Agoulnik
PURPOSE Insulin-like 3 hormone is critical for the induction of growth and differentiation of gubernacular ligaments during embryonic testicular descent. Mice with mutation of insulin-like 3 or its receptor show high intra-abdominal cryptorchidism. We tested whether transgenic over expression of Insl3 can reverse inguinoscrotal cryptorchidism in mice deficient in Gnrhr or Hoxa10 genes. MATERIALS AND METHODS Hoxa10 and Gnrhr deficient mice were intercrossed with Insl3 transgenic mice. The phenotype of the mutant mice and expression of the genes involved in testicular descent were analyzed. Using quantitative reverse transcriptase-polymerase chain reaction we evaluated expression of the genes in neonatal gubernacular cells on INSL3 (Phoenix Pharmaceuticals, Belmont, California) and testosterone stimulation. RESULTS Transgenic over expression of Insl3 failed to restore normal testicular descent in Hoxa10 or Gnrhr deficient males. Histological evaluation did not reveal any differences in Insl3 transgenic gubernacula in either mutant. In mutant females Insl3 over expression resulted in transabdominal descent of the ovaries to the low abdominal position with the subsequent development of inguinal hernia. Expression of androgen receptor, insulin-like 3 receptor and Hoxa10 was not affected after incubation of neonatal gubernacular cells with insulin-like 3 or androgen. CONCLUSIONS The results suggest that insulin-like 3 is sufficient to direct the first transabdominal phase of testicular descent in the absence of hypothalamic-pituitary-gonadal axis signaling or Hoxa10 but their presence is important for inguinoscrotal testicular descent.
Biology of Reproduction | 2003
Anne Truong; Natalia V. Bogatcheva; C. Schelling; Gaudenz Dolf; Alexander I. Agoulnik
Abstract The insulin-like factor 3 (INSL3 or relaxin-like factor) is a hormone produced mainly in gonadal tissues in males and females. Deletion of INSL3 or its receptor in male mice leads to the undescended testes, or cryptorchidism. Here we describe an isolation and analysis of full-length canine INSL3 gene. The INSL3 gene is composed of two exons within a small genomic region. Putative translation of the isolated cDNA yields 132 amino acid preproINSL3 that has the domain structure characteristic for the insulin-relaxin peptide superfamily with a well-conserved receptor-binding domain. Northern blot hybridization showed stronger expression of INSL3 in testis than in ovary. Reverse transcription-polymerase chain reaction analysis of the INSL3 expression revealed a minor splice variant of INSL3 potentially encoding 105 amino acids peptide. We established that the medium, conditioned with recombinant canine INSL3, produced from the full-length cDNA, but not from the minor splice variant, activated human GREAT/LGR8 receptor in vitro. In addition to the functional allele of INSL3, genomic DNA of one of the analyzed dogs contained an intronless nonexpressed pseudogene of INSL3. We isolated canine INSL3 promoter and showed that its activity was strongly mediated by steroidogenic factor-1 in vitro. Using site-specific mutagenesis, we identified a well-conserved steroidogenic factor-1 binding site within canine INSL3 promoter.
International Journal of Cancer | 2010
Sabine Hombach-Klonisch; Joanna Bialek; Yvonne Radestock; Anne Truong; Alexander I. Agoulnik; Barbara Fiebig; Cornelia Willing; Ekkehard Weber; Cuong Hoang-Vu; Thomas Klonisch
The functional role of INSL3 and its receptor RXFP2 in carcinogenesis is largely unknown. We have previously demonstrated (pro‐)cathepsin‐L as a target of INSL3 in human thyroid cancer cells facilitating penetration of tumor cells through elastin matrices. We demonstrate the expression of RXFP2 in human thyroid tissues and in mouse follicular thyroid epithelial cells using Cre‐recombinase transgene driven by Rxfp2 promoter. Recombinant and secreted INSL3 increased the motility of thyroid carcinoma (TC) cells in an autocrine/paracrine manner. This effect required the presence of RXFP2. We identified S100A4 as a novel INSL3 target molecule and showed that S100A4 facilitated INSL3‐induced enhanced motility. Stable transfectants of the human follicular TC cell line FTC‐133 expressing and secreting bioactive human INSL3 displayed enhanced anchorage‐independent growth in soft agar assays. Xenotransplant experiments in nude mice showed that INSL3, but not EGFP‐mock transfectants, developed fast‐growing and highly vascularized xenografts. We used human umbilical vein endothelial cells in capillary tube formation assays to demonstrate increased 2‐dimensional tube formations induced by recombinant human INSL3 and human S100A4 comparable to the effect of vascular endothelial growth factor used as positive control. We conclude that INSL3 is a powerful and multifunctional promoter of tumor growth and angiogenesis in human thyroid cancer cell xenografts. INSL3 actions involve RXFP2 activation and the secretion of S100A4 and (pro‐)cathepsin‐L.
Human Molecular Genetics | 2002
Ivan P. Gorlov; Aparna A. Kamat; Natalia V. Bogatcheva; Eric A. Jones; Dolores J. Lamb; Anne Truong; Colin E. Bishop; Ken McElreavey; Alexander I. Agoulnik
Molecular Endocrinology | 2003
Natalia V. Bogatcheva; Anne Truong; Shu Feng; Wolfgang Engel; Ibrahim M. Adham; Alexander I. Agoulnik
Endocrinology | 2004
Aparna A. Kamat; Shu Feng; Natalia V. Bogatcheva; Anne Truong; Colin E. Bishop; Alexander I. Agoulnik
American Journal of Physiology-endocrinology and Metabolism | 2007
Natalia V. Bogatcheva; Alberto Ferlin; Shu Feng; Anne Truong; Lisa Gianesello; Carlo Foresta; Alexander I. Agoulnik