Elena M. Kaftanovskaya
Florida International University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena M. Kaftanovskaya.
Endocrine-related Cancer | 2010
Shu Feng; Irina U. Agoulnik; Anne Truong; Zhen Li; Chad J. Creighton; Elena M. Kaftanovskaya; Rhea Pereira; Hee Dong Han; Gabriel Lopez-Berestein; Thomas Klonisch; Michael Ittmann; Anil K. Sood; Alexander I. Agoulnik
Relaxin (RLN) is a small peptide hormone expressed in several cancers of reproductive and endocrine organs. Increased expression of RLN in prostate cancer correlates with aggressive cancer. RLN G-protein-coupled receptor (RLN family peptide receptor 1, RXFP1) is expressed in both androgen receptor (AR)-positive and -negative prostate cancers as well as in prostate cancer cell lines. RLN behaves as a cell growth factor and increases invasiveness and proliferation of cancer cells in vitro and in vivo. The objective of this study is to determine whether downregulation of RXFP1 expression using small interfering RNA (siRNA) reduces cancer growth and metastasis in a xenograft model of prostate cancer. We used two well-characterized prostate adenocarcinoma cell lines, AR-positive LNCaP cells and AR-negative PC3 cells. The tumors were established in nude male mice by s.c. injections. Intratumoral injections of siRNAs loaded on biodegradable chitosan nanoparticles led to a downregulation of RXFP1 receptor expression and a dramatic reduction in tumor growth. In LNCaP tumors, the siRNA treatment led to an extensive necrosis. In PC3 xenografts treated with siRNA against RXFP1, the smaller tumor size was associated with the decreased cell proliferation and increased apoptosis. The downregulation of RXFP1 resulted in significant decrease in metastasis rate in PC3 tumors. Global transcriptional profiling of PC3 cells treated with RXFP1 siRNA revealed genes with significantly altered expression profiles previously shown to promote tumorigenesis, including the downregulation of MCAM, MUC1, ANGPTL4, GPI, and TSPAN8. Thus, the suppression of RLN/RXFP1 may have potential therapeutic benefits in prostate cancer.
Molecular Endocrinology | 2012
Elena M. Kaftanovskaya; Zaohua Huang; Agustin M. Barbara; Karel De Gendt; Guido Verhoeven; Ivan P. Gorlov; Alexander I. Agoulnik
Androgens play a critical role in the development of the male reproductive system, including the positioning of the gonads. It is not clear, however, which developmental processes are influenced by androgens and what are the target tissues and cells mediating androgen signaling during testicular descent. Using a Cre-loxP approach, we have produced male mice (GU-ARKO) with conditional inactivation of the androgen receptor (Ar) gene in the gubernacular ligament connecting the epididymis to the caudal abdominal wall. The GU-ARKO males had normal testosterone levels but developed cryptorchidism with the testes located in a suprascrotal position. Although initially subfertile, the GU-ARKO males became sterile with age. We have shown that during development, the mutant gubernaculum failed to undergo eversion, a process giving rise to the processus vaginalis, a peritoneal outpouching inside the scrotum. As a result, the cremasteric sac did not form properly, and the testes remained in the low abdominal position. Abnormal development of the cremaster muscles in the GU-ARKO males suggested the participation of androgens in myogenic differentiation; however, males with conditional AR inactivation in the striated or smooth muscle cells had a normal testicular descent. Gene expression analysis showed that AR deficiency in GU-ARKO males led to the misexpression of genes involved in muscle differentiation, cell signaling, and extracellular space remodeling. We therefore conclude that AR signaling in gubernacular cells is required for gubernaculum eversion and outgrowth. The GU-ARKO mice provide a valuable model of isolated cryptorchidism, one of the most common birth defects in newborn boys.
PLOS ONE | 2014
Kesava Rao Venkata Kurapati; Thangavel Samikkannu; Venkata Subba Rao Atluri; Elena M. Kaftanovskaya; Adriana Yndart; Madhavan Nair
Alzheimers disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. Withania somnifera (WS) also known as ‘ashwagandha’ (ASH) is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is paucity of data on potential neuroprotective effects of ASH against β-Amyloid (1–42) (Aβ) induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of Methanol: Chloroform (3:1) extract of ASH and its constituent Withanolide A (WA) against Aβ induced toxicity, HIV-1Ba-L (clade B) infection and the effects of drugs of abuse using a human neuronal SK-N-MC cell line. Aβ when tested individually, induced cytotoxic effects in SK-N-MC cells as shown by increased trypan blue stained cells. However, when ASH was added to Aβ treated cells the toxic effects were neutralized. This observation was supported by cellular localization of Aβ, MTT formazan exocytosis, and the levels of acetylcholinesterase activity, confirming the chemopreventive or protective effects of ASH against Aβ induced toxicity. Further, the levels of MAP2 were significantly increased in cells infected with HIV-1Ba-L (clade B) as well as in cells treated with Cocaine (COC) and Methamphetamine (METH) compared with control cells. In ASH treated cells the MAP2 levels were significantly less compared to controls. Similar results were observed in combination experiments. Also, WA, a purified constituent of ASH, showed same pattern using MTT assay as a parameter. These results suggests that neuroprotective properties of ASH observed in the present study may provide some explanation for the ethnopharmacological uses of ASH in traditional medicine for cognitive and other HIV associated neurodegenerative disorders and further ASH could be a potential novel drug to reduce the brain amyloid burden and/or improve the HIV-1 associated neurocognitive impairments
International Journal of Nanomedicine | 2015
Upal Roy; Hong Ding; Sudheesh Pilakka-Kanthikeel; Andrea Raymond; Venkata Subba Rao Atluri; Adriana Yndart; Elena M. Kaftanovskaya; Elena V. Batrakova; Marisela Agudelo; Madhavan Nair
The human immunodeficiency virus 1 (HIV-1) still remains one of the leading life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has significantly reduced disease morbidity and mortality. However, most of the drugs have variable penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being the largest lymphoid organ, GALT plays a key role in early HIV infection and host–pathogen interaction. Many different treatment options have been proposed to eradicate the virus from GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier containing anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nanodrug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm size with 0.3 polydispersion index, and the zeta potential of the particles was −19.38±2.2 mV. Further, drug dissolution study has shown a significantly improved sustained release over free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was also significantly higher compared to that of free drug. This novel formulation was able to show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the free drug. The present study has potential for our in vivo targeted nanodrug delivery system by combining traditional enteric-coated capsule technique via oral administration.
The FASEB Journal | 2015
Elena M. Kaftanovskaya; Carolina Lopez; Lydia Ferguson; Courtney Myhr; Alexander I. Agoulnik
It is commonly accepted that androgen‐producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter‐Cre recombinase transgene (Rarb‐cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb‐cre transgene resulted in a 50% increase of AR‐negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger‐like protrusions, and a misexpression of steroidogenic or FLC‐and ALC‐specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation.—Kaftanovskaya, E. M., Lopez, C., Ferguson, L., Myhr, C., Agoulnik, A. I. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis. FASEB J. 29, 2327‐2337 (2015). www.fasebj.org
Biology of Reproduction | 2015
Elena M. Kaftanovskaya; Zaohua Huang; Carolina Lopez; Kirk P. Conrad; Alexander I. Agoulnik
ABSTRACT Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1+/− females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.
Biology of Reproduction | 2016
Lydia Ferguson; Elena M. Kaftanovskaya; Carmen Manresa; Agustin M. Barbara; Robert J. Poppiti; Yingchun Tan; Alexander I. Agoulnik
ABSTRACT The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (RosaNotch1). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, RosaNotch1 females were infertile, whereas control RosaNotch1 mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities.
Scientific Reports | 2015
Thangavel Samikkannu; Kurapati V. K. Rao; Abdul Salam; Venkata Subba Rao Atluri; Elena M. Kaftanovskaya; Marisela Agudelo; Suray Perez; Changwon Yoo; Andrea Raymond; Hong Ding; Madhavan Nair
HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity.
Endocrinology | 2011
Zhen Li; Shu Feng; Vanessa Lopez; Gina Elhammady; Matthew L. Anderson; Elena M. Kaftanovskaya; Alexander I. Agoulnik
Gene mutations of insulin-like 3 (INSL3) peptide or its G protein-coupled receptor RXFP2 (relaxin family peptide receptor 2) lead to cryptorchidism. The role of INSL3 in adult females is less known, although INSL3 expression has been described in female reproductive organs. Caveolin-1 (CAV1), the main component of caveoli cell membrane invaginations, has been shown to play an important role in epithelial organization and stromal-epithelial interactions. We created a null allele of Cav1 mice by deleting its second exon through embryonic stem cell targeting. Immunohistochemical analysis demonstrated that CAV1 expression was primarily localized to endothelial blood vessel cells and the myometrium uterus, whereas the strongest expression of Rxfp2 was detected in the endometrial epithelium. By 12 months of age approximately 18% of Cav1-/- females developed single or multiple dilated endometrial cysts lined by a flattened, simple low epithelium. A deficiency for Rxfp2 on Cav1-deficient background led to more than a 2-fold increase in the incidence of uterine cysts (54-58%). Appearance of cysts led to a severe disorganization of uterine morphology. We have found that the cysts had an increased expression of β-catenin and estrogen receptor β in endometrial stromal and epithelial cells and increased epithelial proliferation. An analysis of simple dilated cysts in human patients for CAV1 expression did not show appreciable differences with control regardless of menstrual phase, suggesting an involvement of additional factors in human disease. The results of this study suggest a novel synergistic role of INSL3/RXFP2 and CAV1 in structural maintenance of the uterus.
Journal of the Endocrine Society | 2017
Elena M. Kaftanovskaya; Mariluz Soula; Courtney Myhr; Brian A. Ho; Stefanie N. Moore; Changwon Yoo; Briana Cervantes; Javier J. How; Juan J. Marugan; Irina U. Agoulnik; Alexander I. Agoulnik
Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1. The lead compound ML290 demonstrated preferred absorption, distribution, metabolism, and excretion profiles, is easy to synthesize, and has high stability in vivo. However, ML290 does not activate rodent RXFP1s and therefore cannot be tested in common preclinical animal models. Here we describe the production and analysis of a mouse transgenic model, a knock-out/knock-in of the human RXFP1 (hRXFP1) complementary DNA into the mouse Rxfp1 (mRxfp1) gene. Insertion of the vector into the mRxfp1 locus caused disruption of mRxfp1 and expression of hRXFP1. The transcriptional expression pattern of the hRXFP1 allele was similar to mRxfp1. Female mice homozygous for hRXFP1 showed relaxation of the pubic symphysis at parturition and normal development of mammary nipples and vaginal epithelium, indicating full complementation of mRxfp1 gene ablation. Intravenous injection of relaxin led to an increase in heart rate in humanized and wild-type females but not in Rxfp1-deficient mice, whereas ML290 increased heart rate in humanized but not wild-type animals, suggesting specific target engagement by ML290. Moreover, intraperitoneal injection of ML290 caused a decrease in blood osmolality. Taken together, our data show humanized RXFP1 mice can be used for testing relaxin receptor modulators in various preclinical studies.