Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Vaiman is active.

Publication


Featured researches published by Anne Vaiman.


Biology of Reproduction | 2003

Activin Signaling Pathways in Ovine Pituitary and LβT2 Gonadotrope Cells

Joëlle Dupont; Judith McNeilly; Anne Vaiman; Sylvie Canepa; Yves Combarnous; Catherine Taragnat

Abstract In the pituitary, activin stimulates the synthesis and release of FSH. However, the activin receptor signaling pathways that mediate these effects are poorly known. We investigated these mechanisms in primary ovine pituitary cells (POP) and in the murine LβT2 gonadotrope cell line. POP cells and LβT2 cells express the different activin receptors (types IA, IB, IIA, and IIB) and the Smad proteins (Smad-2, -3, -4, and -7). In both POP and LβT2 cells, activin activated several signaling pathways: Smad-2, extracellular regulated kinase-1/2 (ERK1/2), p38, and phosphatidylinositol 3′-kinase (PI3K)/Akt. Phosphorylation of ERK1/2 and p38 were stimulated (3- to 6-fold) rapidly in 5 min, whereas activation of both Smad-2 and Akt (3- to 5-fold) occurred later, in 60 min. Activin also increased the association of activin receptor IIB with PI3K. Using specific inhibitors, we demonstrated that the activation of Smad-2 was partially blocked by the inhibition of PI3K but not by the inhibition of ERK1/2 or p38, suggesting a cross-talk between the Smad and PI3K/Akt pathways. In both POP and LβT2 cells, FSH expression and secretion in response to activin were not altered by the inhibition of PI3K/Akt, ERK1/2, or p38 pathways, whereas they were reduced by about 2-fold by expression of a dominant negative of Smad-2 or the natural inhibitory Smad-7 in LβT2 cells. These results indicate that activin activates several signaling pathways with different time courses in both POP and LβT2 cells, but only the Smad-2 pathway appears to be directly implicated in FSH expression and release in LβT2 cells.


Mammalian Genome | 2000

Cytogenetic localization of 44 new coding sequences in the horse

Sophie Godard; Anne Vaiman; Laurent Schibler; Denis Mariat; D. Vaiman; E. P. Cribiu; Gérard Guérin

Abstract. The purpose of this study was to increase the number of genes assigned by in situ hybridization to equine chromosomes and thus the number of links for comparative mapping with other species. Forty-four new sequences were added to the horse cytogenetic map by FISH mapping of BAC clones containing genes (35) or ESTs (9). Three approaches were developed: use of horse BAC clones screened with (i) horse EST primers, (ii) interspecific consensus intraexonic primers, and (iii) use of goat BAC containing genes previously localized on goat chromosomes. Present data suggest that the second approach is the most promising. A total of 46 segments containing one or several genes could be compared, among which 40 loci could be included in 16 synteny groups between human and horse, displaying one ordered segment and several breaking points along chromosomes. All single BAC localizations confirm the most recent mapping data. Twenty-six out of 31 chromosomes now contain a gene mapped by in situ hybridization, and 14 new arm-to-arm segment homologies were revealed.


Journal of Virology | 2003

Chromosomal Distribution of Endogenous Jaagsiekte Sheep Retrovirus Proviral Sequences in the Sheep Genome

Jonathan M. Carlson; Monique Lyon; Jeanette V. Bishop; Anne Vaiman; Edmond Cribiu; Jean-François Mornex; Susan E. Brown; Dennis L. Knudson; James C. DeMartini; Caroline Leroux

ABSTRACT A family of endogenous retroviruses (enJSRV) closely related to Jaagsiekte sheep retrovirus (JSRV) is ubiquitous in domestic and wild sheep and goats. Southern blot hybridization studies indicate that there is little active replication or movement of the enJSRV proviruses in these species. Two approaches were used to investigate the distribution of proviral loci in the sheep genome. Fluorescence in situ hybridization (FISH) to metaphase chromosome spreads using viral DNA probes was used to detect loci on chromosomes. Hybridization signals were reproducibly detected on seven sheep chromosomes and eight goat chromosomes in seven cell lines. In addition, a panel of 30 sheep-hamster hybrid cell lines, each of which carries one or more sheep chromosomes and which collectively contain the whole sheep genome, was examined for enJSRV sequences. DNA from each of the lines was used as a template for PCR with JSRV gag-specific primers. A PCR product was amplified from 27 of the hybrid lines, indicating that JSRV gag sequences are found on at least 15 of the 28 sheep chromosomes, including those identified by FISH. Thus, enJSRV proviruses are essentially randomly distributed among the chromosomes of sheep and goats. FISH and/or Southern blot hybridization on DNA from several of the sheep-hamster hybrid cell lines suggests that loci containing multiple copies of enJSRV are present on chromosomes 6 and 9. The origin and functional significance of these arrays is not known.


BMC Genomics | 2014

Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology

Clémence Desjardin; Anne Vaiman; Xavier Mata; Rachel Legendre; Johan Laubier; Sean Kennedy; Denis Laloë; Eric Barrey; C. Jacques; Edmond Cribiu; Laurent Schibler

BackgroundMicroRNAs (miRNAs) are an abundant class of small single-stranded non-coding RNA molecules ranging from 18 to 24 nucleotides. They negatively regulate gene expression at the post-transcriptional level and play key roles in many biological processes, including skeletal development and cartilage maturation. In addition, miRNAs involvement in osteoarticular diseases has been proved and some of them were identified as suitable biomarkers for pathological conditions. Equine osteochondrosis (OC) is one of the most prevalent juvenile osteoarticular disorders in horses and represents a major concern for animal welfare and economic reasons. Its etiology and pathology remain controversial and biological pathways as well as molecular mechanisms involved in the physiopathology are still unclear. This study aims to investigate the potential role of miRNAs in equine osteochondrosis (OC) physiopathology.Short-read NGS technology (SOLID™, Life Technologies) was used to establish a comprehensive repertoire of miRNA expressed in either equine cartilage or subchondral bone. Undamaged cartilage and subchondral bone samples from healthy (healthy samples) and OC-affected (predisposed samples) 10-month Anglo-Arabian foals were analysed. Samples were also subjected or not to an experimental mechanical loading to evaluate the role of miRNAs in the regulation of mechano-transduction pathways. Predicted targets of annotated miRNAs were identified using miRmap.ResultsEpiphyseal cartilage and subchondral bone miRNome were defined, including about 300 new miRNAs. Differentially expressed miRNAs were identified between bone and cartilage from healthy and OC foals, as well as after an experimental mechanical loading. In cartilage, functional annotation of their predicted targets suggests a role in the maintenance of cartilage integrity through the control of cell cycle and differentiation, energy production and metabolism as well as extracellular matrix structure and dynamics. In bone, miRNA predicited targets were associated with osteoblasts and osteoclasts differentiation, though the regulation of energy production, vesicle transport and some growth factor signaling pathways.ConclusionTaken together, our results suggest a role of miRNAs in equine OC physiopathology and in the cellular response to biomechanical stress in cartilage and bone. In silico target prediction and functional enrichment analysis provides new insight into OC molecular physiopathology.


Scientific Reports | 2016

Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse

Núria Mach; Sandra Plancade; Alicja Elzbieta Pacholewska; Jérôme Lecardonnel; Julie Rivière; Marco Moroldo; Anne Vaiman; Caroline Morgenthaler; Marine Beinat; Alizée Nevot; Céline Robert; Eric Barrey

The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.


PLOS ONE | 2011

A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus)

Mathieu Diribarne; Xavier Mata; Céline Chantry-Darmon; Anne Vaiman; Gérard Auvinet; Stephan Bouet; Séverine Deretz; E. P. Cribiu; Hubert de Rochambeau; D. Allain; Gérard Guérin

The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the “r1” mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits.


Genetics Selection Evolution | 2000

Isolation of subtelomeric DNA sequences labelling sheep and goat chromosome ends

D. Vaiman; Ana Brunialti; Mohamed Bensaada; Céline Derbois; Anne Vaiman; A. M. Crawford; Philippe Metezeau; Edmond Cribiu

Two techniques that make it possible to isolate telomere DNA are presented, using sheep as an example. The first technique is based upon the screening of a sheep BAC library with PCR amplified DNA segments preserved from high-power laser beam irradiation. Twenty-three BACs hybridising to 13 subtelomeric regions in sheep and goats were obtained (out of 27 in the sheep complement), of which 13 recognised more than one region, telomeric or not. Twenty-three microsatellites were isolated from these BACs and 22 were genetically mapped on the sheep international genetic map, always consistently with the cytogenetical localisation in 17 cases out of 22. These results are discussed. The second technique is based upon the selective cloning of subtelomeric enriched DNA. Preliminary results were obtained by this approach.


BMC Genomics | 2014

Omics technologies provide new insights into the molecular physiopathology of equine osteochondrosis

Clémence Desjardin; Julie Rivière; Anne Vaiman; Caroline Morgenthaler; Mathieu Diribarne; Michel Zivy; Céline Robert; Laurence Le Moyec; Laurence Wimel; Olivier Lepage; C. Jacques; Edmond Cribiu; Laurent Schibler

BackgroundOsteochondrosis (OC(D)) is a juvenile osteo-articular disorder affecting several mammalian species. In horses, OC(D) is considered as a multifactorial disease and has been described as a focal disruption of endochondral ossification leading to the development of osteoarticular lesions. Nevertheless, OC(D) physiopathology is poorly understood. Affected horses may present joint swelling, stiffness and lameness. Thus, OC(D) is a major concern for the equine industry. Our study was designed as an integrative approach using omics technologies for the identification of constitutive defects in epiphyseal cartilage and/or subchondral bone associated with the development of primary lesions to further understand OC(D) pathology. This study compared samples from non-affected joints (hence lesion-free) from OC(D)-affected foals (n = 5, considered predisposed samples) with samples from OC-free foals (n = 5) considered as control samples. Consequently, results are not confounded by changes associated with the evolution of the lesion, but focus on altered constitutive molecular mechanisms. Comparative proteomics and micro computed tomography analyses were performed on predisposed and OC-free bone and cartilage samples. Metabolomics was also performed on synovial fluid from OC-free, OC(D)-affected and predisposed joints.ResultsTwo lesion subtypes were identified: OCD (lesion with fragment) and OC (osteochondral defects). Modulated proteins were identified using omics technologies (2-DE proteomics) in cartilage and bone from affected foals compare to OC-free foals. These were associated with cellular processes including cell cycle, energy production, cell signaling and adhesion as well as tissue-specific processes such as chondrocyte maturation, extracellular matrix and mineral metabolism. Of these, five had already been identified in synovial fluid of OC-affected foals: ACTG1 (actin, gamma 1), albumin, haptoglobin, FBG (fibrinogen beta chain) and C4BPA (complement component 4 binding protein, alpha).ConclusionThis study suggests that OCD lesions may result from a cartilage defect whereas OC lesions may be triggered by both bone and cartilage defects, suggesting that different molecular mechanisms responsible for the equine osteochondrosis lesion subtypes and predisposition could be due to a defect in both bone and cartilage. This study will contribute to refining the definition of OC(D) lesions and may improve diagnosis and development of therapies for horses and other species, including humans.


PLOS ONE | 2012

LIPH Expression in Skin and Hair Follicles of Normal Coat and Rex Rabbits

Mathieu Diribarne; Xavier Mata; Julie Rivière; Stephan Bouet; Anne Vaiman; Jérôme Chapuis; Fabienne Reine; Renaud Fleurot; Gérard Auvinet; Séverine Deretz; D. Allain; Laurent Schibler; E. P. Cribiu; Gérard Guérin

Natural mutations in the LIPH gene were shown to be responsible for hair growth defects in humans and for the rex short hair phenotype in rabbits. In this species, we identified a single nucleotide deletion in LIPH (1362delA) introducing a stop codon in the C-terminal region of the protein. We investigated the expression of LIPH between normal coat and rex rabbits during critical fetal stages of hair follicle genesis, in adults and during hair follicle cycles. Transcripts were three times less expressed in both fetal and adult stages of the rex rabbits than in normal rabbits. In addition, the hair growth cycle phases affected the regulation of the transcription level in the normal and mutant phenotypes differently. LIPH mRNA and protein levels were higher in the outer root sheath (ORS) than in the inner root sheath (IRS), with a very weak signal in the IRS of rex rabbits. In vitro transfection shows that the mutant protein has a reduced lipase activity compared to the wild type form. Our results contribute to the characterization of the LIPH mode of action and confirm the crucial role of LIPH in hair production.


Animal Genetics | 2010

Genomic structure, polymorphism and expression of ACCN1 and ACCN3 genes in the horse.

Xavier Mata; A. Ducasse; Anne Vaiman; Mathieu Diribarne; A.‐S. Fraud; Gérard Guérin

A category of cation gate proteins was shown to be present in sensory neurons and act as receptors of protons present in tissues such as muscles. The Amiloride-sensitive Cation Channel, Neuronal (ACCN) gene family is known to play a role in the transmission of pain through specialized pH sensitive neurons. Muscles from horses submitted to strenuous exercises produce lactic acid, which may induce variable pain through ACCN differential properties. The sequences of the equine cDNAs were determined to be 2.6 kb in length with an open reading frame of 1539 bp for ACCN1 and 2.1 kb in length with an open reading frame of 1602 bp for ACCN3. The ACCN1 gene is 990 kb long and contains 10 exons, and the ACCN3 gene is 4.2 kb long and contains 11 exons. The equine ACCN1 and ACCN3 genes have an ubiquitous expression but ACCN1 is more highly expressed in the spinal cord. We identified one alternative ACCN3 splicing variant present in various equine tissues. These mRNA variants may encode two different protein isoforms 533 and 509 amino acids long. Ten single nucleotide polymorphisms (SNPs) were detected for ACCN1; five in the coding and five in the non-coding region, with no amino acid change, while the three SNPs identified in the coding region of the ACCN3 gene introduce amino acid changes. The equine in silico promoter sequence reveals a structure similar to those of other mammalian species, especially for the ACCN1 gene.

Collaboration


Dive into the Anne Vaiman's collaboration.

Top Co-Authors

Avatar

Xavier Mata

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gérard Guérin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edmond Cribiu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Schibler

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mathieu Diribarne

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Barrey

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

D. Vaiman

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

D. Allain

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

E. P. Cribiu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gérard Auvinet

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge