Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Schibler is active.

Publication


Featured researches published by Laurent Schibler.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes

Philippe Mulsant; Frédéric Lecerf; Stéphane Fabre; Laurent Schibler; Philippe Monget; Isabelle Lanneluc; Claudine Pisselet; Juliette Riquet; Danielle Monniaux; Isabelle Callebaut; Edmond Cribiu; Jacques Thimonier; Jacques Teyssier; Loys Bodin; Yves Cognié; Nour Chitour; Jean-Michel Elsen

Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles.


Mammalian Genome | 2002

Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome

Dragan Milenkovic; Anne Oustry-Vaiman; Teri L. Lear; Alain Billault; Denis Mariat; François Piumi; Laurent Schibler; Edmond Cribiu; Gérard Guérin

The aim of this study was to increase the number of type I markers on the horse cytogenetic map and to improve comparison with maps of other species, thus facilitating positional candidate cloning studies. BAC clones from two different sources were FISH mapped: homologous horse BAC clones selected from our newly extended BAC library using consensus primer sequences and heterologous goat BAC clones. We report the localization of 136 genes on the horse cytogenetic map, almost doubling the number of cytogenetically mapped genes with 48 localizations from horse BAC clones and 88 from goat BAC clones. For the first time, genes were mapped to ECA13p, ECA29, and probably ECA30. A total of 284 genes are now FISH mapped on the horse chromosomes. Comparison with the human map defines 113 conserved segments that include new homologous segments not identified by Zoo-FISH on ECA7 and ECA13p.


Mammalian Genome | 2000

Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats.

Philippe Pinton; Laurent Schibler; Edmond Cribiu; J. Gellin; M. Yerle

Abstract. In total, 113 genes that have already been located in humans and goats were cytogenetically mapped in pigs. For this purpose, 165 gene-containing bacterial artificial chromosomes (BACs) isolated in goats were used in heterologous fluorescent in situ hybridization on porcine chromosomes. Among them, 113 (or 69%) gave clear and specific signals, and 52 did not work in heterologous conditions. These localizations are a significant contribution to development of the porcine gene map and also to the comparative map for humans and pigs. They allowed us to specify the information obtained by Zoo-FISH while taking the gene order into account; the number of conserved fragments detected for human and pig chromosomes reached 84. The average size of conserved fragments could be estimated at 33 cM. As these genes had already been mapped in goats, the comparison was extended to ruminants. The previous results obtained in this species, suggesting a correlation between human chromosome abnormalities and evolutionary breakpoints, were confirmed in pigs.


Genome Biology | 2007

A physical map of the bovine genome

Warren M Snelling; Readman Chiu; Jacqueline E. Schein; Matthew Hobbs; Colette A. Abbey; David L. Adelson; Jan Aerts; Gary L Bennett; Ian Bosdet; Mekki Boussaha; Rudiger Brauning; Alexandre R Caetano; Marcos M Costa; A. M. Crawford; Brian P. Dalrymple; A. Eggen; Annelie Everts-van der Wind; Sandrine Floriot; Mathieu Gautier; C. A. Gill; Ronnie D Green; Robert A. Holt; Oliver Jann; Steven J.M. Jones; S. M. Kappes; J. W. Keele; Pieter J. de Jong; Denis M. Larkin; Harris A. Lewin; J. C. McEwan

BackgroundCattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project.ResultsA bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly.ConclusionFurther refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.


Cytogenetic and Genome Research | 2000

Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae.

L. Iannuzzi; G.P. Di Meo; A. Perucatti; D. Incarnato; Laurent Schibler; E. P. Cribiu

Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.


Mammalian Genome | 1999

Construction and characterization of a sheep BAC library of three genome equivalents

D. Vaiman; Alain Billault; Kamila Tabet-Aoul; Laurent Schibler; Didier Vilette; Anne Oustry-Vaiman; Catherine Soravito; Edmond Cribiu

A sheep BAC library of over three genome equivalents was constructed and arrayed in superpools and row, column, and plate pools. The library contains 90,000 clones distributed in 39 superpools. The average insert size was estimated at 123 kb. The library was screened by PCR with 77 primer pairs corresponding to ovine microsatellites distributed throughout the genome. The probability of finding a random sequence in the library could be estimated at 0.96.


Mammalian Genome | 1998

Construction of a horse BAC library and cytogenetical assignment of 20 type I and type II markers

Sophie Godard; Laurent Schibler; A. Oustry; Edmond Cribiu; Gérard Guérin

Abstract. A horse BAC library was constructed with about 40, 000 clones and mean insert size of 110 kb representing a 1.5 genome equivalent coverage and a probability of finding a single sequence of 0.75. It was characterized by PCR screening of about 130 sequences of horse microsatellites and exonic gene sequences retrieved from databases. BACs containing 8 microsatellites and 12 genes were subsequently localized by fluorescent in situ hybridization (FISH) on chromosomes. Two linkage groups were newly assigned to chromosomes: LG2 to ECA3 and LG5 to ECA24, and five linkage groups were also oriented—LG3, LG4, LG5, LG8, and LG12—leaving only three groups unassigned. This work showed how this library makes an integrated map a realistic objective for the near future and how it can make comparative mapping more efficient in a search for candidate genes of interest.


Cytogenetic and Genome Research | 2003

The river buffalo (Bubalus bubalis, 2n = 50) cytogenetic map: assignment of 64 loci by fluorescence in situ hybridization and R-banding

L. Iannuzzi; G.P. Di Meo; A. Perucatti; Laurent Schibler; D. Incarnato; D. S. Gallagher; A. Eggen; L. Ferretti; E. P. Cribiu; James E. Womack

Sixty-four genomic BAC-clones mapping five type I (ADCYAP1, HRH1, IL3, RBP3B and SRY) and 59 type II loci, previously FISH-mapped to goat (63 loci) and cattle (SRY) chromosomes, were fluorescence in situ mapped to river buffalo R-banded chromosomes, noticeably extending the physical map of this species. All mapped loci from 26 bovine syntenic groups were located on homeologous chromosomes and chromosome regions of river buffalo and goat (cattle) chromosomes, confirming the high degree of chromosome homeologies among bovids. Furthermore, an improved cytogenetic map of the river buffalo with 293 loci from all 31 bovine syntenic groups is reported.


Mammalian Genome | 1998

Construction and extensive characterization of a goat Bacterial Artificial Chromosome library with threefold genome coverage

Laurent Schibler; D. Vaiman; A. Oustry; Nathalie Guinec; Anne-Laure Dangy-Caye; Alain Billault; Edmond Cribiu

A goat Bacterial Artificial Chromosome (BAC) library of 61,440 independent clones was constructed and characterized. The average size of the inserts was estimated at 153 kilobases by analyzing almost 500 clones using Not1 digestion followed by FIGE (Field Inverted Gel Electrophoresis) analysis. The library represents about three genome equivalents, which yields a theoretical probability of 0.95 of isolating a particular DNA sequence. After individual growth, the clones were arrayed in 40 superpools, which were organized in three dimension pools. A rapid technique for pool DNA preparation by microwave treatment was set up. This technique was compatible with PCR analysis. Primer pairs from 166 sequences (microsatellites, coding sequences from goat, and conserved Expressed Sequence Tags (ESTs) from humans) enabled the library to be successfully searched in 165 cases, with an average of 3.52 positive superpools. Only one sequence could not be found. The degree of chimerism was evaluated by FISH analysis with DNA from over 110 clones and was estimated at 4%. This BAC library will constitute an invaluable tool for positional cloning in ruminants, as well as for more general comparative mapping studies in mammals.


Journal of Animal Science | 2012

Genome-wide association studies for osteochondrosis in French trotter horses

Simon Teyssèdre; M.C. Dupuis; Gérard Guérin; Laurent Schibler; J.M. Denoix; J. M. Elsen; Anne Ricard

A genome-wide association study for osteochondrosis (OC) in French Trotter horses was carried out to detect QTL using genotype data from the Illumina EquineSNP50 BeadChip assay. Analysis data came from 161 sire families of French Trotter horses with 525 progeny and family sizes ranging from 1 to 20. Genotypes were available for progeny (n = 525) and sires with at least 2 progeny (n = 98). Radiographic data were obtained from progeny using at least 10 views to reveal OC. All radiographic findings were described by at least 2 veterinary experts in equine orthopedics, and severity indices (scores) were assigned based on the size and location of the lesion. Traits used were a global score, the sum of all severity scores lesions (GM, quantitative measurement), and the presence or absence of OC on the fetlock (FM), hock (HM), and other sites (other). Data were analyzed using 2 mixed models including fixed effects, polygenic effects, and SNP or haplotype cluster effects. By combining results with both methods at moderate evidence of association threshold P < 5 × 10(-5), this genome-wide association study displayed 1 region for GM on the Equus caballus chromosome (ECA) 13, 2 for HM on ECA 3 and 14, and 1 for other on ECA 15. One region on ECA 3 for HM represented the most significant hit (P = 3 × 10(-6)). By comparing QTL between traits at a decreased threshold (P < 5 × 10(-4)), the 4 QTL detected for GM were associated to a QTL detected for FM or HM but never both. Another interesting result was that no QTL were found in common between HM and FM.

Collaboration


Dive into the Laurent Schibler's collaboration.

Top Co-Authors

Avatar

Edmond Cribiu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

E. P. Cribiu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

D. Vaiman

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

A. Perucatti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

D. Incarnato

National Research Council

View shared research outputs
Top Co-Authors

Avatar

G.P. Di Meo

National Research Council

View shared research outputs
Top Co-Authors

Avatar

L. Iannuzzi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carole Moreno

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

A. Oustry

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne Vaiman

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge