Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Vianney is active.

Publication


Featured researches published by Anne Vianney.


Journal of Bacteriology | 2005

CpxR/OmpR Interplay Regulates Curli Gene Expression in Response to Osmolarity in Escherichia coli

Gregory Jubelin; Anne Vianney; Jean-Marc Ghigo; Jean-Claude Lazzaroni; Philippe Lejeune; Corinne Dorel

Curli fibers could be described as a virulence factor able to confer adherence properties to both abiotic and eukaryotic surfaces. The ability to adapt rapidly to changing environmental conditions through signal transduction pathways is crucial for the growth and pathogenicity of bacteria. OmpR was shown to activate csgD expression, resulting in curli production. The CpxR regulator was shown to negatively affect curli gene expression when binding to its recognition site that overlaps the csgD OmpR-binding site. This study was undertaken to clarify how the interplay between the two regulatory proteins, OmpR and CpxR, can affect the transcription of the curli gene in response to variation of the medium osmolarity. Band-shift assays with purified CpxR proteins indicate that CpxR binds to the csgD promoter region at multiple sites that are ideally positioned to explain the csg repression activity of CpxR. To understand the physiological meaning of this in vitro molecular phenomenon, we analyzed the effects of an osmolarity shift on the two-component pathway CpxA/CpxR. We establish here that the Cpx pathway is activated at both transcriptional and posttranscriptional levels in response to a high osmolarity medium and that CpxR represses csgD expression in high-salt-content medium, resulting in low curli production. However, csgD repression in response to high sucrose content is not mediated by CpxR but by the global regulatory protein H-NS. Therefore, multiple systems (EnvZ/OmpR, Cpx, Rcs, and H-NS) appear to be involved in sensing environmental osmolarity, leading to sophisticated regulation of the curli genes.


Molecular Microbiology | 1998

TolB protein of Escherichia coli K‐12 interacts with the outer membrane peptidoglycan‐associated proteins Pal, Lpp and OmpA

Thierry Clavel; Pierre Germon; Anne Vianney; Raymond Portalier; Jean Claude Lazzaroni

The Tol–Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. Transmembrane domains of TolQ, TolR and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. TolB and the central domain of TolA interact in vitro with the outer membrane porins. In this study, both genetic and biochemical analyses were carried out to analyse the links between TolB, Pal and other components of the cell envelope. It was shown that TolB could be cross‐linked in vivo with Pal, OmpA and Lpp, while Pal was associated with TolB and OmpA. The isolation of pal and tolB mutants disrupting some interactions between these proteins represents a first approach to characterizing the residues contributing to the interactions. We propose that TolB and Pal are part of a multiprotein complex that links the peptidoglycan to the outer membrane. The Tol–Pal proteins might form transenvelope complexes that bring the two membranes into close proximity and help some outer membrane components to reach their final destination.


Biochimie | 2002

The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins.

Jean-Claude Lazzaroni; Jean-François Dubuisson; Anne Vianney

The Tol proteins are involved in outer membrane stability of Gram-negative bacteria. The TolQRA proteins form a complex in the inner membrane while TolB and Pal interact near the outer membrane. These two complexes are transiently connected by an energy-dependent interaction between Pal and TolA. The Tol proteins have been parasitized by group A colicins for their translocation through the cell envelope. Recent advances in the structure and energetics of the Tol system, as well as the interactions between the N-terminal translocation domain of colicins and the Tol proteins are presented.


Journal of Bacteriology | 2001

Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR.

Pierre Germon; Marie-Céline Ray; Anne Vianney; Jean Claude Lazzaroni

TolQ, TolR, and TolA inner membrane proteins of Escherichia coli are involved in maintaining the stability of the outer membrane. They share homology with the ExbB, ExbD, and TonB proteins, respectively. The last is involved in energy transduction between the inner and the outer membrane, and its conformation has been shown to depend on the presence of the proton motive force (PMF), ExbB, and ExbD. Using limited proteolysis experiments, we investigated whether the conformation of TolA was also affected by the PMF. We found that dissipation of the PMF by uncouplers led to the formation of a proteinase K digestion fragment of TolA not seen when uncouplers are omitted. This fragment was also detected in Delta tolQ, Delta tolR, and tolA(H22P) mutants but, in contrast to the parental strain, was also seen in the absence of uncouplers. We repeated those experiments in outer membrane mutants such as lpp, pal, and Delta rfa mutants: the behavior of TolA in lpp mutants was similar to that observed with the parental strain. However, the proteinase K-resistant fragment was never detected in the Delta rfa mutant. Altogether, these results suggest that TolA is able to undergo a PMF-dependent change of conformation. This change requires TolQ, TolR, and a functional TolA N-terminal domain. The potential role of this energy-dependent process in the stability of the outer membrane is discussed.


Molecular Microbiology | 1996

Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis.

Thierry Clavel; Jean Claude Lazzaroni; Anne Vianney; Raymond Portalier

The tolQRABpal cluster of Escherichia coli K‐12 encodes proteins involved in the maintenance of cell‐envelope integrity. In addition, toi/pal mutations result in a mucoid colony phenotype at low temperature. The synthesis of capsular polysaccharides by the cps genes is controlled by the positive regulator RcsA and the two‐component RcsC/RcsB system. It was shown that the mucoid phenotype of the tol/pal mutants was due to an rcsCB‐dependent activation of the cps genes. Furthermore, we have identified a mutation in the rcsC gene that decreased the activity of a tolA‐lac operon fusion independently of RcsA and partially independently of RcsB activators. The corresponding rcsC338 mutation resulted in a Glu to Lys substitution at residue 338 of RcsC. This mutation induced mucoidy even at high temperature. We propose that RcsC modulates the phosphorylated forms of RcsB and an uncharacterized regulatory protein involved in the control of the tolQRA genes in an opposite manner. Moreover, our findings strengthen the previous suggestion that RcsC senses some alterations in the cell surface such as those induced by tol, pal or rfa mutations, and activates capsule synthesis to protect the cell against deleterious agents.


Journal of Bacteriology | 2000

Identification by Genetic Suppression of Escherichia coli TolB Residues Important for TolB-Pal Interaction

Marie-Céline Ray; Pierre Germon; Anne Vianney; Raymond Portalier; Jean Claude Lazzaroni

The Tol-Pal system of Escherichia coli is involved in maintaining outer membrane stability. Mutations in tolQ, tolR, tolA, tolB, or pal genes result in sensitivity to bile salts and the leakage of periplasmic proteins. Moreover, some of the tol genes are necessary for the entry of group A colicins and the DNA of filamentous bacteriophages. TolQ, TolR, and TolA are located in the cytoplasmic membrane where they interact with each other via their transmembrane domains. TolB and Pal form a periplasmic complex near the outer membrane. We used suppressor genetics to identify the regions important for the interaction between TolB and Pal. Intragenic suppressor mutations were characterized in a domain of Pal that was shown to be involved in interactions with TolB and peptidoglycan. Extragenic suppressor mutations were located in tolB gene. The C-terminal region of TolB predicted to adopt a beta-propeller structure was shown to be responsible for the interaction of the protein with Pal. Unexpectedly, none of the suppressor mutations was able to restore a correct association between Pal and peptidoglycan, suggesting that interactions between Pal and other components such as TolB may also be important for outer membrane stability.


PLOS ONE | 2009

The TolC Protein of Legionella pneumophila Plays a Major Role in Multi-Drug Resistance and the Early Steps of Host Invasion

Mourad Ferhat; Danièle Atlan; Anne Vianney; Jean-Claude Lazzaroni; Patricia Doublet; Christophe Gilbert

Pneumonia associated with Iegionnairess disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds.


Journal of Bacteriology | 2002

Mutational Analysis of the TolA C-Terminal Domain of Escherichia coli and Genetic Evidence for an Interaction between TolA and TolB

Jean François Dubuisson; Anne Vianney; Jean Claude Lazzaroni

The Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.


Mbio | 2015

The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway

Céline Michard; Daniel Sperandio; Nathalie Baïlo; Javier Pizarro-Cerdá; Lawrence LeClaire; Elise Chadeau-Argaud; Isabel Pombo-Grégoire; Eva Hervet; Anne Vianney; Christophe Gilbert; Mathias Faure; Pascale Cossart; Patricia Doublet

ABSTRACT Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses. IMPORTANCE Deciphering the individual contribution of each Dot/Icm type 4 secretion system substrate to the intracellular life-style of L. pneumophila remains the principal challenge in understanding the molecular basis of Legionella virulence. Our finding that LegK2 is a Dot/Icm effector that inhibits actin polymerization on the Legionella-containing vacuole importantly contributes to the deciphering of the molecular mechanisms evolved by Legionella to counteract the endocytic pathway. Indeed, our results highlight the essential role of LegK2 in preventing late endosomes from fusing with the phagosome. More generally, this work is the first demonstration of local actin remodeling as a mechanism used by bacteria to control organelle trafficking. Further, by characterizing the role of the bacterial protein kinase LegK2, we reinforce the concept that posttranslational modifications are key strategies used by pathogens to evade host cell defenses. Deciphering the individual contribution of each Dot/Icm type 4 secretion system substrate to the intracellular life-style of L. pneumophila remains the principal challenge in understanding the molecular basis of Legionella virulence. Our finding that LegK2 is a Dot/Icm effector that inhibits actin polymerization on the Legionella-containing vacuole importantly contributes to the deciphering of the molecular mechanisms evolved by Legionella to counteract the endocytic pathway. Indeed, our results highlight the essential role of LegK2 in preventing late endosomes from fusing with the phagosome. More generally, this work is the first demonstration of local actin remodeling as a mechanism used by bacteria to control organelle trafficking. Further, by characterizing the role of the bacterial protein kinase LegK2, we reinforce the concept that posttranslational modifications are key strategies used by pathogens to evade host cell defenses.


Journal of Biological Chemistry | 2011

The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3'-5')-cyclic dimeric GMP synthesis.

Mélanie Levet-Paulo; Jean-Claude Lazzaroni; Christophe Gilbert; Danièle Atlan; Patricia Doublet; Anne Vianney

A significant part of bacterial two-component system response regulators contains effector domains predicted to be involved in metabolism of bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), a second messenger that plays a key role in many physiological processes. The intracellular level of c-di-GMP is controlled by diguanylate cyclase and phosphodiesterases activities associated with GGDEF and EAL domains, respectively. The Legionella pneumophila Lens genome displays 22 GGDEF/EAL domain-encoding genes. One of them, lpl0329, encodes a protein containing a two-component system receiver domain and both GGDEF and EAL domains. Here, we demonstrated that the GGDEF and EAL domains of Lpl0329 are both functional and lead to simultaneous synthesis and hydrolysis of c-di-GMP. Moreover, these two opposite activities are finely regulated by Lpl0329 phosphorylation due to the atypical histidine kinase Lpl0330. Indeed, Lpl0330 was found to autophosphorylate on a histidine residue in an atypical H box, which is conserved in various bacteria species and thus defines a new histidine kinase subfamily. Lpl0330 also catalyzes the phosphotranfer to Lpl0329, which results in a diguanylate cyclase activity decrease whereas phosphodiesterase activity remains efficient. Altogether, these data present (i) a new histidine kinase subfamily based on the conservation of an original H box that we named HGN H box, and (ii) the first example of a bifunctional enzyme that modulates synthesis and turnover of c-di-GMP in response to phosphorylation of its receiver domain.

Collaboration


Dive into the Anne Vianney's collaboration.

Top Co-Authors

Avatar

Jean Claude Lazzaroni

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond Portalier

Claude Bernard University Lyon 1

View shared research outputs
Top Co-Authors

Avatar

Xavier Charpentier

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Allombert

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge