Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Yuqing Yang is active.

Publication


Featured researches published by Anne Yuqing Yang.


Food and Chemical Toxicology | 2014

The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway

Constance Lay Lay Saw; Yue Guo; Anne Yuqing Yang; Ximena Paredes-Gonzalez; Christina N. Ramirez; Douglas Pung; Ah-Ng Tony Kong

Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations.


Food and Chemical Toxicology | 2013

Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2–ARE pathway

Constance Lay Lay Saw; Anne Yuqing Yang; Yue Guo; Ah-Ng Tony Kong

Oxidative stress is a major driver of many diseases, including cancer. The induction of Nrf2-ARE-mediated antioxidant enzymes provides a cellular defense against oxidative stress. Astaxanthin (AST), a red dietary carotenoid, possesses potent antioxidant activity, and inhibits oxidative damages. Polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are important nutritional essentials and potent antioxidants found in fish oil. In the present study, we investigated whether AST in combination with low concentrations of DHA or EPA has a synergistic antioxidant effect in a HepG2-C8-ARE-luciferase cell line system. Using free radical scavenging DPPH assay, AST was more potent DPPH radical scavenger than DHA and EPA. MTS assay revealed that AST was non-toxic up to 100μM compared with more toxic DHA and EPA. The three compounds alone and in combination elevated cellular GSH levels, increased the total antioxidant activity, induced mRNA expression of Nrf2 and Nrf2 downstream target genes NQO1, HO-1, and GSTM2. Lower concentrations of AST show synergistic effects when combined with DHA or EPA. In summary, our study shows synergistic antioxidant effects of AST and PUFAs at low concentrations. The Nrf2/ARE pathway plays an important role in the antioxidative effects induced by AST, DHA, and EPA.


Cell & Bioscience | 2014

Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages

Constance Lay Lay Saw; Anne Yuqing Yang; Mou-Tuan Huang; Yue Liu; Jong Hun Lee; Tin Oo Khor; Zheng-Yuan Su; Limin Shu; Yao-Ping Lu; Allan H. Conney; Ah-Ng Tony Kong

Nrf2 plays a critical role in defending against oxidative stress and inflammation. We previously reported that Nrf2 confers protection against ultraviolet-B (UVB)-induced inflammation, sunburn reaction, and is involved in sulforaphane-mediated photo-protective effects in the skin. In this study, we aimed to demonstrate the protective role of Nrf2 against inflammation-mediated extracellular matrix (ECM) damage induced by UVB irradiation. Ear biopsy weights were significantly increased in both Nrf2 wild-type (Nrf2 WT) and knockout (Nrf2 KO) mice one week after UVB irradiation. However, these weights increased more significantly in KO mice compared to WT mice, suggesting a greater inflammatory response in KO mice. In addition, we analyzed the protein expression of numerous markers, including macrophage inflammatory protein-2 (MIP-2), pro-matrix metalloproteinase-9 (MMP-9), and p53. p53, a regulator of DNA repair, was overexpressed in Nrf2 KO mice, indicating that the absence of Nrf2 led to more sustained DNA damage. There was also more substantial ECM degradation and increased inflammation in UVB-irradiated Nrf2 KO mice compared to UVB-irradiated WT mice. Furthermore, the protective effects of Nrf2 in response to UVB irradiation were mediated by increased HO-1 protein expression. Collectively, our results show that Nrf2 plays a key role in protecting against UVB irradiation and that the photo-protective effect of Nrf2 is closely related to the inhibition of ECM degradation and inflammation.


Chemical Research in Toxicology | 2016

Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1.

Wenji Li; Doug Pung; Zheng-Yuan Su; Yue Guo; Chengyue Zhang; Anne Yuqing Yang; Xi Zheng; Zhi-Yun Du; Kun Zhang; Ah-Ng Tony Kong

It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.


Life Sciences | 2014

Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models

Anne Yuqing Yang; Jong Hun Lee; Limin Shu; Chengyue Zhang; Zheng-Yuan Su; Yao-Ping Lu; Mou-Tuan Huang; Christina N. Ramirez; Douglas Pung; Ying Huang; Michael P. Verzi; Ronald P. Hart; Ah-Ng Tony Kong

AIMS Ultraviolet irradiation and carcinogens have been reported to induce epigenetic alterations, which potentially contribute to the development of skin cancer. We aimed to study the genome-wide DNA methylation profiles of skin cancers induced by ultraviolet B (UVB) irradiation and 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-1,3-acetate (TPA). MAIN METHODS Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was utilized to ascertain the DNA methylation profiles in the following common mouse skin cancer models: SKH-1 mice treated with UVB irradiation and CD-1 mice treated with DMBA/TPA. Ingenuity® Pathway Analysis (IPA) software was utilized to analyze the data and to identify gene interactions among the different pathways. KEY FINDINGS 6003 genes in the UVB group and 5424 genes in the DMBA/TPA group exhibited a greater than 2-fold change in CpG methylation as mapped by the IPA software. The top canonical pathways identified by IPA after the two treatments were ranked were pathways related to cancer development, cAMP-mediated signaling, G protein-coupled receptor signaling and PTEN signaling associated with UVB treatment, whereas protein kinase A signaling and xenobiotic metabolism signaling were associated with DMBA/TPA treatment. In addition, the mapped IL-6-related inflammatory pathways displayed alterations in the methylation profiles of inflammation-related genes linked to UVB treatment. SIGNIFICANCE Genes with altered methylation were ranked in the UVB and DMBA/TPA models, and the molecular interaction networks of those genes were identified by the IPA software. The genome-wide DNA methylation profiles of skin cancers induced by UV irradiation or by DMBA/TPA will be useful for future studies on epigenetic gene regulation in skin carcinogenesis.


Current Topics in Medicinal Chemistry | 2015

Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers.

Anne Yuqing Yang; Hyuck Kim; Wenji Li; Ah-Ng Tony Kong

Post-translational modifications can affect gene expression in a long-term manner without changes in the primary nucleotide sequence of the DNA. These epigenetic alterations involve dynamic processes that occur in histones, chromatin-associated proteins and DNA. In response to environmental stimuli, abnormal epigenetic alterations cause disorders in the cell cycle, apoptosis and other cellular processes and thus contribute to the incidence of diverse diseases, including cancers. In this review, we will summarize recent studies focusing on certain epigenetic readers, writers, and erasers associated with cancer development and how newly discovered natural compounds and their derivatives could interact with these targets. These advances provide insights into epigenetic alterations in cancers and the potential utility of these alterations as therapeutic targets for the future development of chemopreventive and chemotherapeutic drugs.


Chemical Research in Toxicology | 2012

Pharmacodynamics of Ginsenosides: Antioxidant Activities, Activation of Nrf2 and Potential Synergistic Effects of Combinations

Constance Lay Lay Saw; Anne Yuqing Yang; David Cheng; Sarandeep S.S. Boyanapalli; Zheng-Yuan Su; Tin On Khor; Song Gao; Jing-Rong Wang; Zhi-Hong Jiang; Ah-Ng Tony Kong


Chemical Research in Toxicology | 2016

Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics

Wenji Li; Yue Guo; Chengyue Zhang; Renyi Wu; Anne Yuqing Yang; John Antonydas Gaspar; Ah-Ng Tony Kong


Cell & Bioscience | 2015

Association of aberrant DNA methylation in Apc(min/+) mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq.

Yue Guo; Jong Hun Lee; Limin Shu; Ying Huang; Wenji Li; Chengyue Zhang; Anne Yuqing Yang; Sarandeep S.S. Boyanapalli; Ansu O. Perekatt; Ronald P. Hart; Michael P. Verzi; Ah-Ng Tony Kong


The American Journal of Chinese Medicine | 2018

Sophora flavescens Containing-QYJD Formula Activates Nrf2 Anti-Oxidant Response, Blocks Cellular Transformation and Protects Against DSS-Induced Colitis in Mouse Model

Ruoming Fang; Renyi Wu; Qian Zuo; Ran Yin; Chengyue Zhang; Chao Wang; Yue Guo; Anne Yuqing Yang; Wenji Li; Lizhu Lin; Ah-Ng Tony Kong

Collaboration


Dive into the Anne Yuqing Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge