Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annette K. Brenner is active.

Publication


Featured researches published by Annette K. Brenner.


FEBS Journal | 2005

Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus (Bath)

Odd André Karlsen; Linda Ramsevik; Live J. Bruseth; Øivind Larsen; Annette K. Brenner; Frode S. Berven; Harald B. Jensen; Johan R. Lillehaug

For a long time, the haemerythrin family of proteins was considered to be restricted to only a few phyla of marine invertebrates. When analysing differential protein expression in the methane‐oxidizing bacterium, Methylococcus capsulatus (Bath), grown at a high and low copper‐to‐biomass ratio, respectively, we identified a putative prokaryotic haemerythrin expressed in high‐copper cultures. Haemerythrins are recognized by a conserved sequence motif that provides five histidines and two carboxylate ligands which coordinate two iron atoms. The diiron site is located in a hydrophobic pocket and is capable of binding O2. We cloned the M. capsulatus haemerythrin gene and expressed it in Escherichia coli as a fusion protein with NusA. The haemerythrin protein was purified to homogeneity cleaved from its fusion partner. Recombinant M. capsulatus haemerythrin (McHr) was found to fold into a stable protein. Sequence similarity analysis identified all the candidate residues involved in the binding of diiron (His22, His58, Glu62, His77, His81, His117, Asp122) and the amino acids forming the hydrophobic pocket in which O2 may bind (Ile25, Phe59, Trp113, Leu114, Ile118). We were also able to model a three‐dimensional structure of McHr maintaining the correct positioning of these residues. Furthermore, UV/vis spectrophotometric analysis demonstrated the presence of conjugated diiron atoms in McHr. A comprehensive genomic database search revealed 21 different prokaryotes containing the haemerythrin signature (PROSITE 00550), indicating that these putative haemerythrins may be a conserved prokaryotic subfamily.


Molecules | 2014

Therapeutic Targeting the Cell Division Cycle 25 (CDC25) Phosphatases in Human Acute Myeloid Leukemia — The Possibility to Target Several Kinases through Inhibition of the Various CDC25 Isoforms

Annette K. Brenner; Håkon Reikvam; Antonio Lavecchia; Øystein Bruserud

The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.


Stem Cell Research | 2015

The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells

Håkon Reikvam; Annette K. Brenner; Karen Marie Hagen; Knut Liseth; Silje Skrede; Kimberley Joanne Hatfield; Øystein Bruserud

Interactions between acute myeloid leukemia (AML) blasts and neighboring stromal cells are important for disease development and chemosensitivity. However, the molecular mechanisms involved in the cytokine-mediated crosstalk between mesenchymal stem cells (MSCs) and AML cells are largely unknown. Leukemic cells derived from 18 unselected AML patients were cultured with bone marrow MSCs derived from healthy donors; the populations then being separated by a semipermeable membrane. Coculture had only minor effects on MSC proliferation. The unique cytokine network in cocultures was determined by high constitutive MSC release of certain cytokines (especially IL-6 and vascular endothelial growth factor) and constitutive release of a wide range of soluble mediators by primary AML cells. However, the AML cell release varied considerably between patients, and these differences between patients were also reflected in the coculture levels even though supra-additive effects were seen for many mediators. These effects on the local cytokine network were dependent on a functional crosstalk between the two cell subsets. The crosstalk altered the global gene expression profile of the MSCs, especially expression of genes encoding proteins involved in downstream signaling from Toll like receptors, NFκB signaling and CCL/CXCL chemokine release. Thus, primary AML cells alter the functional phenotype of normal MSCs.


Molecules | 2016

The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells

Annette K. Brenner; Tor Henrik Andersson Tvedt; Øystein Bruserud

Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.


Frontiers in Immunology | 2016

A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators

Annette K. Brenner; Håkon Reikvam; Øystein Bruserud

Acute myeloid leukemia (AML) is an aggressive and heterogeneous bone marrow malignancy, the only curative treatment being intensive chemotherapy eventually in combination with allogeneic stem cell transplantation. Both the AML and their neighboring stromal cells show constitutive chemokine release, but chemokines seem to function as regulators of AML cell proliferation only for a subset of patients. Chemokine targeting is therefore considered not only for immunosuppression in allotransplanted patients but also as a possible antileukemic strategy in combination with intensive chemotherapy or as part of disease-stabilizing treatment at least for the subset of patients with chemokine-responsive AML cells. In this study, we characterized more in detail the leukemia cell phenotype of the chemokine-responsive patients. We investigated primary AML cells derived from 79 unselected patients. Standardized in vitro suspension cultures were used to investigate AML cell proliferation, and global gene expression profiles were compared for chemokine responders and non-responders identified through the proliferation assays. CCL28-induced growth modulation was used as marker of chemokine responsiveness, and 38 patients were then classified as chemokine-responsive. The effects of exogenous CCL28 (growth inhibition/enhancement/no effect) thus differed among patients and was also dependent on the presence of exogenous hematopoietic growth factors as well as constitutive AML cell cytokine release. The effect of CCR1 inhibition in the presence of chemokine-secreting mesenchymal stem cells also differed among patients. Chemokine-responsive AML cells showed altered expression of genes important for (i) epigenetic transcriptional regulation, particularly lysine acetylation; (ii) helicase activity, especially DExD/H RNA helicases; and (iii) angioregulatory proteins important for integrin binding. Thus, chemokine responsiveness is part of a complex AML cell phenotype with regard to extracellular communication and transcriptional regulation. Chemokine targeting in chemokine-responsive patients may thereby alter AML cell trafficking and increase their susceptibility toward antileukemic treatment, e.g., conventional chemotherapy or targeting of other phenotypic characteristics of the chemokine-responsive cells.


Frontiers in Immunology | 2017

Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms

Annette K. Brenner; Ina Nepstad; Øystein Bruserud

Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.


Journal of Immunological Methods | 2015

The importance of sample collection when using single cytokine levels and systemic cytokine profiles as biomarkers — a comparative study of serum versus plasma samples

Tor Henrik Anderson Tvedt; Kristin Paulsen Rye; Håkon Reikvam; Annette K. Brenner; Øystein Bruserud

BACKGROUND Cytokines, soluble adhesion molecules and metalloproteinases can be detected in human serum or plasma samples. Such systemic levels are widely used as biomarkers in epidemiological and clinical studies. METHODS We prepared serum samples and three types of plasma samples (EDTA, heparin, citric acid) from 20 healthy individuals. The levels of 31 cytokines, four soluble adhesion molecules and eight matrix metalloproteinases were analyzed by Luminex technology. RESULTS Most mediators showed detectable levels in both plasma and serum. Several mediators that can be released by platelets showed increased serum levels, especially CCL5 and CD40L, but for the other mediators the serum levels did not correlate with peripheral blood platelet counts and for these last mediators serum and plasma levels often showed strong correlations. The use of bivalirudin for anticoagulation significantly increased and citric acid combined with platelet inhibitors (ticagrelor, acetylsalicylic acid plus prostaglandin E2) did not alter plasma levels of platelet-store mediators compared with citric acid alone. The impact of sample preparation differed between mediators; for many mediators strong correlations were seen between serum and plasma levels even when absolute levels differed. Soluble adhesion molecule levels showed only minor differences between samples. Unsupervised hierarchical clustering suggested that the effect of sampling/preparation was strongest for serum and heparin plasma samples. CONCLUSION Careful standardization of sample preparation is usually necessary when analyzing systemic mediator levels, and differences caused by sample preparation should be considered as a possible explanation if studies show conflicting results.


Journal of Biological Chemistry | 2012

Human Protein N-terminal Acetyltransferase hNaa50p (hNAT5/hSAN) Follows Ordered Sequential Catalytic Mechanism COMBINED KINETIC AND NMR STUDY

Rune Evjenth; Annette K. Brenner; Paul R. Thompson; Thomas Arnesen; Nils Åge Frøystein; Johan R. Lillehaug

Background: Nα-Acetylation is catalyzed by N-terminal acetyltransferases (NATs). The reaction mechanisms of NATs are unknown. hNaa50p is a member of the human NAT family. Results: Kinetic parameters and product inhibition patterns were determined. Acetyl-CoA binding induced conformational changes facilitating peptide binding. Conclusion: hNaa50p most likely utilizes the Theorell-Chance mechanism. Significance: Bisubstrate inhibitors, mimicking a ternary complex, should function as specific inhibitors of human NATs. Nα-Acetylation is a common protein modification catalyzed by different N-terminal acetyltransferases (NATs). Their essential role in the biogenesis and degradation of proteins is becoming increasingly evident. The NAT hNaa50p preferentially modifies peptides starting with methionine followed by a hydrophobic amino acid. hNaa50p also possesses Nϵ-autoacetylation activity. So far, no eukaryotic NAT has been mechanistically investigated. In this study, we used NMR spectroscopy, bisubstrate kinetic assays, and product inhibition experiments to demonstrate that hNaa50p utilizes an ordered Bi Bi reaction of the Theorell-Chance type. The NMR results, both the substrate binding study and the dynamic data, further indicate that the binding of acetyl-CoA induces a conformational change that is required for the peptide to bind to the active site. In support of an ordered Bi Bi reaction mechanism, addition of peptide in the absence of acetyl-CoA did not alter the structure of the protein. This model is further strengthened by the NMR results using a catalytically inactive hNaa50p mutant.


Expert Review of Hematology | 2015

Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) – gene transcription, cell cycle regulation, metabolism and intercellular communication

Håkon Reikvam; Michelle Hauge; Annette K. Brenner; Kimberley Joanne Hatfield; Øystein Bruserud

Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4–CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.


Molecules | 2017

CDC25 Inhibition in Acute Myeloid Leukemia–A Study of Patient Heterogeneity and the Effects of Different Inhibitors

Annette K. Brenner; Håkon Reikvam; Kristin Paulsen Rye; Karen Marie Hagen; Antonio Lavecchia; Øystein Bruserud

Cell division cycle 25 (CDC25) protein phosphatases regulate cell cycle progression through the activation of cyclin-dependent kinases (CDKs), but they are also involved in chromatin modulation and transcriptional regulation. CDC25 inhibition is regarded as a possible therapeutic strategy for the treatment of human malignancies, including acute myeloid leukemia (AML). We investigated the in vitro effects of CDC25 inhibitors on primary human AML cells derived from 79 unselected patients in suspension cultures. Both the previously well-characterized CDC25 inhibitor NSC95397, as well as five other inhibitors (BN82002 and the novel small molecular compounds ALX1, ALX2, ALX3, and ALX4), only exhibited antiproliferative effects for a subset of patients when tested alone. These antiproliferative effects showed associations with differences in genetic abnormalities and/or AML cell differentiation. However, the responders to CDC25 inhibition could be identified by analysis of global gene expression profiles. The differentially expressed genes were associated with the cytoskeleton, microtubules, and cell signaling. The constitutive release of 28 soluble mediators showed a wide variation among patients and this variation was maintained in the presence of CDC25 inhibition. Finally, NSC95397 had no or only minimal effects on AML cell viability. In conclusion, CDC25 inhibition has antiproliferative effects on primary human AML cells for a subset of patients, and these patients can be identified by gene expression profiling.

Collaboration


Dive into the Annette K. Brenner's collaboration.

Top Co-Authors

Avatar

Øystein Bruserud

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar

Håkon Reikvam

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge