Kristin Paulsen Rye
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Paulsen Rye.
Journal of Immunological Methods | 2015
Tor Henrik Anderson Tvedt; Kristin Paulsen Rye; Håkon Reikvam; Annette K. Brenner; Øystein Bruserud
BACKGROUND Cytokines, soluble adhesion molecules and metalloproteinases can be detected in human serum or plasma samples. Such systemic levels are widely used as biomarkers in epidemiological and clinical studies. METHODS We prepared serum samples and three types of plasma samples (EDTA, heparin, citric acid) from 20 healthy individuals. The levels of 31 cytokines, four soluble adhesion molecules and eight matrix metalloproteinases were analyzed by Luminex technology. RESULTS Most mediators showed detectable levels in both plasma and serum. Several mediators that can be released by platelets showed increased serum levels, especially CCL5 and CD40L, but for the other mediators the serum levels did not correlate with peripheral blood platelet counts and for these last mediators serum and plasma levels often showed strong correlations. The use of bivalirudin for anticoagulation significantly increased and citric acid combined with platelet inhibitors (ticagrelor, acetylsalicylic acid plus prostaglandin E2) did not alter plasma levels of platelet-store mediators compared with citric acid alone. The impact of sample preparation differed between mediators; for many mediators strong correlations were seen between serum and plasma levels even when absolute levels differed. Soluble adhesion molecule levels showed only minor differences between samples. Unsupervised hierarchical clustering suggested that the effect of sampling/preparation was strongest for serum and heparin plasma samples. CONCLUSION Careful standardization of sample preparation is usually necessary when analyzing systemic mediator levels, and differences caused by sample preparation should be considered as a possible explanation if studies show conflicting results.
OncoImmunology | 2013
Kristoffer Sand; Kristin Paulsen Rye; Bård Mannsåker; Øystein Bruserud; Astrid Olsnes Kittang
Chemokines and their receptors are involved in the recruitment of leukocytes to sites of inflammation. Recently, chemokine expression signatures have been reported to convey a prognostic value in myelodysplastic syndrome (MDS) patients. In the present study, we investigated the chemokine receptor repertoire on fresh peripheral blood lymphocytes from 31 (22 low-risk and 9 high-risk) patients affected by MDS. Chemokine receptor expression was studied in defined T-cell subsets using eight-color flow cytometry. MDS patients exhibited quantitative differences in peripheral lymphocyte subpopulations. In addition, T cells obtained from MDS patients expressed a chemokine receptor pattern suggesting a dominance of mature and activated T cells. This is illustrated by increased levels of CCR3, CCR5, CX3CR1 and/or by a decreased abundance of CCR7 in defined T-cell subsets. The T-cell subset distribution appears to differ between the peripheral blood and the bone marrow of MDS patients, suggesting a preferential recruitment of specific T-cell subsets to the latter compartment. Alteration in chemokine receptor expression can develop over time even in patients that are considered clinically stable. Elevated expression levels of CXCR4 by CD8+ cells were associated with prolonged patient survival and reduced numbers of bone marrow blasts. We conclude that immunological abnormalities in MDS also involve chemokine receptors on different subsets of T cells, and that these changes may have a prognostic value.
Molecules | 2017
Annette K. Brenner; Håkon Reikvam; Kristin Paulsen Rye; Karen Marie Hagen; Antonio Lavecchia; Øystein Bruserud
Cell division cycle 25 (CDC25) protein phosphatases regulate cell cycle progression through the activation of cyclin-dependent kinases (CDKs), but they are also involved in chromatin modulation and transcriptional regulation. CDC25 inhibition is regarded as a possible therapeutic strategy for the treatment of human malignancies, including acute myeloid leukemia (AML). We investigated the in vitro effects of CDC25 inhibitors on primary human AML cells derived from 79 unselected patients in suspension cultures. Both the previously well-characterized CDC25 inhibitor NSC95397, as well as five other inhibitors (BN82002 and the novel small molecular compounds ALX1, ALX2, ALX3, and ALX4), only exhibited antiproliferative effects for a subset of patients when tested alone. These antiproliferative effects showed associations with differences in genetic abnormalities and/or AML cell differentiation. However, the responders to CDC25 inhibition could be identified by analysis of global gene expression profiles. The differentially expressed genes were associated with the cytoskeleton, microtubules, and cell signaling. The constitutive release of 28 soluble mediators showed a wide variation among patients and this variation was maintained in the presence of CDC25 inhibition. Finally, NSC95397 had no or only minimal effects on AML cell viability. In conclusion, CDC25 inhibition has antiproliferative effects on primary human AML cells for a subset of patients, and these patients can be identified by gene expression profiling.
Bone Marrow Research | 2012
Anita Ryningen; Håkon Reikvam; Ina Nepstad; Kristin Paulsen Rye; Øystein Bruserud
Effects of the mTOR inhibitor rapamycin were characterized on in vitro cultured primary human acute myeloid leukemia (AML) cells and five AML cell lines. Constitutive mTOR activation seemed to be a general characteristic of primary AML cells. Increased cellular stress induced by serum deprivation increased both mTOR signaling, lysosomal acidity, and in vitro apoptosis, where lysosomal acidity/apoptosis were independent of increased mTOR signaling. Rapamycin had antiproliferative and proapoptotic effects only for a subset of patients. Proapoptotic effect was detected for AML cell lines only in the presence of serum. Combination of rapamycin with valproic acid, all-trans retinoic acid (ATRA), and NF-κB inhibitors showed no interference with constitutive mTOR activation and mTOR inhibitory effect of rapamycin and no additional proapoptotic effect compared to rapamycin alone. In contrast, dual inhibition of the PI3K-Akt-mTOR pathway by rapamycin plus a PI3K inhibitor induced new functional effects that did not simply reflect a summary of single drug effects. To conclude, (i) pharmacological characterization of PI3K-Akt-mTOR inhibitors requires carefully standardized experimental models, (ii) rapamycin effects differ between patients, and (iii) combined targeting of different steps in this pathway should be further investigated whereas combination of rapamycin with valproic acid, ATRA, or NF-κB inhibitors seems less promising.
International Journal of Molecular Sciences | 2016
Tor Henrik Anderson Tvedt; Stein Atle Lie; Håkon Reikvam; Kristin Paulsen Rye; Roald Lindås; Tobias Gedde-Dahl; Aymen Bushra Ahmed; Øystein Bruserud
Several pretransplant factors, including CRP (C-reactive protein) levels, reflect the risk of complications after allogeneic stem cell transplantation. IL-6 induces CRP increase, and we therefore investigated the effects of pretransplant IL-6, soluble IL-6 receptors, IL-6 family cytokines and CRP serum levels on outcome for 100 consecutive allotransplant recipients. All patients had related donors, none had active infections and 99 patients were in complete remission before conditioning. The incidence of acute graft versus host disease (aGVHD) requiring treatment was 40%, survival at Day +100 82%, and overall survival 48%. Despite a significant correlation between pretransplant CRP and IL-6 levels, only CRP levels significantly influenced transplant-related mortality (TRM). However, CRP did not influence overall survival (OS). Pretransplant IL-31 influenced late TRM. Finally, there was a significant association between pretransplant IL-6 and early postconditioning weight gain (i.e., fluid retention), and this fluid retention was a risk factor for aGVHD, TRM and OS. To conclude, pretransplant CRP, IL-31 and early posttransplant fluid retention were independent risk factors for TRM and survival after allotransplantation.
Expert Opinion on Therapeutic Targets | 2017
Annette K. Brenner; Tor Henrik Anderson Tvedt; Ina Nepstad; Kristin Paulsen Rye; Karen M. Hagen; Håkon Reikvam; Øystein Bruserud
ABSTRACT Objective: Acute myeloid leukaemia (AML) is a heterogeneous malignancy; we studied how the constitutive cytokine release by the AML cells varies among patients. Methods: We investigated the constitutive release of 28 mediators during in vitro culture for 79 consecutive patients. Results: Constitutive cytokine release profiles differed among patients, and hierarchical clustering identified three subsets with high, intermediate and low release, respectively. The high-release subset showed high levels of most mediators, usually monocytic differentiation as well as altered mRNA expression of proteins involved in intracellular iron homeostasis and molecular trafficking; this subset also included 4 out of 6 patients with inv(16). Spontaneous in vitro apoptosis did not differ among the subsets. For the high-release patients, cytokines were released both by CD34+ and CD34− cells. The mRNA and released protein levels showed statistically significant correlations only for eleven of the cytokines. The overall survival after intensive anti-leukemic therapy was significantly higher for high-release compared with low-release patients. Pharmacological targeting of iron metabolism (iron chelation, transferrin receptor blocking) altered the cytokine release profile. Conclusions: Subclassification of AML patients based on the constitutive cytokine release may be clinically relevant and a part of a low-risk (i.e. chemosensitive) AML cell phenotype.
International Journal of Molecular Sciences | 2016
Astrid Olsnes Kittang; Kristoffer Sand; Annette K. Brenner; Kristin Paulsen Rye; Øystein Bruserud
Introduction: Myelodysplastic syndromes (MDS) are characterized by bone marrow failure due to disturbed bone marrow maturation. MDS is associated with increased risk of transformation to acute myeloid leukemia (AML) and features of immunological dysregulation. Materials and methods: Serum levels of 47 soluble immune mediators were examined in samples derived from 49 MDS patients (35 low-risk and 14 high-risk) and 23 healthy adults. Our patients represent an unselected population-based cohort. The mediators included cytokines, soluble adhesion proteins, matrix metalloproteases, and tissue inhibitors of proteases. Levels were determined using Luminex assays. Patients were classified as low- and high-risk based on the international prognostic scoring system (IPSS) score. Results: When comparing the serum levels of single mediators the MDS patients showed a relatively wide variation range for several mediators compared with healthy adults, especially interleukin 6 (IL-6), IL-8/CXCL8, CCL3, and CCL4. The high-risk patients had lower levels of epidermal growth factor (EGF), cluster of differentiation 40 ligand (CD40L), CCL5, CCL11, CXCL5, matrix metalloproteinase 1 (MMP-1), MMP-9, and tissue inhibitor of metalloproteinases 2 (TIMP-2) compared with low-risk patients. Unsupervised hierarchical cluster analysis visualized marked serum mediator profile differences between MDS patients; based on this analysis three patient subsets could be identified. The healthy adults were also included in this analysis and, as expected, they formed their own separate cluster, except for one outlier. Both low- and high-risk patients showed considerable heterogeneity with regard to serum profile, and this heterogeneity seems stable over time (one year follow-up). Finally, very few mediators differed between low- and high-risk patients, but hierarchical clustering based both on all mediators, as well as five selected mediators (EGF, CCL11, TIMP-2, MMP-1, and MMP-9) identified subsets of patients with significantly increased frequency of high-risk disease (χ-square test p = 0.0158 and p = 0.0148).
Cytotherapy | 2018
Guro Kristin Melve; Elisabeth Ersvær; Kristin Paulsen Rye; Aymen Bushra Ahmed; Einar K. Kristoffersen; Tor Hervig; Håkon Reikvam; Kimberley Joanne Hatfield; Øystein Bruserud
BACKGROUND Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. METHODS Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. RESULTS Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. DISCUSSION G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact.
OncoImmunology | 2016
Astrid Olsnes Kittang; Shahram Kordasti; Kristoffer Sand; Benedetta Costantini; Anne Marijn Kramer; Pilar Perez-Abellan; Thomas Seidl; Kristin Paulsen Rye; Karen Marie Hagen; Austin Kulasekararaj; Øystein Bruserud; Ghulam J. Mufti
BMC Immunology | 2017
Kurt Hanevik; Einar K. Kristoffersen; Kristine Mørch; Kristin Paulsen Rye; Steinar Sørnes; Staffan G. Svärd; Øystein Bruserud; Nina Langeland