Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annika Sääf is active.

Publication


Featured researches published by Annika Sääf.


PLOS ONE | 2008

Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

Annika Sääf; Maria Tengvall-Linder; Howard Y. Chang; Adam S. Adler; Carl-Fredrik Wahlgren; Annika Scheynius; Magnus Nordenskjöld; Maria Bradley

Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema.


BMC Medical Genomics | 2010

Birt-Hogg-Dubé renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression

Jeff A Klomp; David Petillo; Natalie M. Niemi; Karl Dykema; Jindong Chen; Ximing J. Yang; Annika Sääf; Peter Zickert; Markus Aly; Ulf S.R. Bergerheim; Magnus Nordenskjöld; Sophie Gad; Sophie Giraud; Yves Denoux; Laurent Yonneau; Arnaud Mejean; Viorel Vasiliu; Stéphane Richard; Jeffrey P. MacKeigan; Bin Tean Teh; Kyle A. Furge

BackgroundGermline mutations in the folliculin (FLCN) gene are associated with the development of Birt-Hogg-Dubé syndrome (BHDS), a disease characterized by papular skin lesions, a high occurrence of spontaneous pneumothorax, and the development of renal neoplasias. The majority of renal tumors that arise in BHDS-affected individuals are histologically similar to sporadic chromophobe renal cell carcinoma (RCC) and sporadic renal oncocytoma. However, most sporadic tumors lack FLCN mutations and the extent to which the BHDS-derived renal tumors share genetic defects associated with the sporadic tumors has not been well studied.MethodsBHDS individuals were identified symptomatically and FLCN mutations were confirmed by DNA sequencing. Comparative gene expression profiling analyses were carried out on renal tumors isolated from individuals afflicted with BHDS and a panel of sporadic renal tumors of different subtypes using discriminate and clustering approaches. qRT-PCR was used to confirm selected results of the gene expression analyses. We further analyzed differentially expressed genes using gene set enrichment analysis and pathway analysis approaches. Pathway analysis results were confirmed by generation of independent pathway signatures and application to additional datasets.ResultsRenal tumors isolated from individuals with BHDS showed distinct gene expression and cytogenetic characteristics from sporadic renal oncocytoma and chromophobe RCC. The most prominent molecular feature of BHDS-derived kidney tumors was high expression of mitochondria-and oxidative phosphorylation (OXPHOS)-associated genes. This mitochondria expression phenotype was associated with deregulation of the PGC-1α-TFAM signaling axis. Loss of FLCN expression across various tumor types is also associated with increased nuclear mitochondrial gene expression.ConclusionsOur results support a genetic distinction between BHDS-associated tumors and other renal neoplasias. In addition, deregulation of the PGC-1α-TFAM signaling axis is most pronounced in renal tumors that harbor FLCN mutations and in tumors from other organs that have relatively low expression of FLCN. These results are consistent with the recently discovered interaction between FLCN and AMPK and support a model in which FLCN is a regulator of mitochondrial function.


PLOS ONE | 2013

DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors

Lovisa E. Reinius; Anna Gref; Annika Sääf; Nathalie Acevedo; Maaike Joerink; Maciej Kupczyk; Mauro D'Amato; Anna Bergström; Erik Melén; Annika Scheynius; Sven-Erik Dahlén; Göran Pershagen; Cilla Söderhäll; Juha Kere

Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.


American Journal of Respiratory and Critical Care Medicine | 2017

Genome-wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

Anna Gref; Simon Kebede Merid; Olena Gruzieva; Stephane Ballereau; Allan B. Becker; Tom Bellander; Anna Bergström; Yohan Bossé; Matteo Bottai; Moira Chan-Yeung; Elaine Fuertes; Despo Ierodiakonou; Ruiwei Jiang; Stéphane Joly; Meaghan J. Jones; Michael S. Kobor; Michal Korek; Anita L. Kozyrskyj; Ashish Kumar; Nathanaël Lemonnier; Elaina MacIntyre; Camille Ménard; David C. Nickle; Ma'en Obeidat; Johann Pellet; Marie Standl; Annika Sääf; Cilla Söderhäll; Carla M.T. Tiesler; Maarten van den Berge

Rationale: The evidence supporting an association between traffic‐related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene‐environment interaction effects on childhood asthma using genome‐wide single‐nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome‐wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look‐up for interaction in two separate North American cohorts, CHS (Childrens Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look‐up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP‐Gal:betaGlcNAc &bgr;‐1,4‐galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene‐environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


PLOS ONE | 2013

Interaction between Retinoid Acid Receptor-Related Orphan Receptor Alpha (RORA) and Neuropeptide S Receptor 1 (NPSR1) in Asthma

Nathalie Acevedo; Annika Sääf; Cilla Söderhäll; Erik Melén; Jami Mandelin; Christina Orsmark Pietras; Sini Ezer; Johanna Vendelin; Gustav Boije af Gennäs; Jari Yli-Kauhaluoma; Harri Alenius; Erika von Mutius; Gert Doekes; Charlotte Braun-Fahrländer; Josef Riedler; Marianne van Hage; Mauro D’Amato; Annika Scheynius; Göran Pershagen; Juha Kere; Ville Pulkkinen

Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36–2.93, p = 0.0003 in BAMSE; and 1.61, 1.18–2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.


PLOS ONE | 2013

Rule-based models of the interplay between genetic and environmental factors in childhood allergy.

Susanne Bornelöv; Annika Sääf; Erik Melén; Anna Bergström; Behrooz Torabi Moghadam; Ville Pulkkinen; Nathalie Acevedo; Christina Orsmark Pietras; Markus Ege; Charlotte Braun-Fahrländer; Josef Riedler; Gert Doekes; Michael Kabesch; Marianne van Hage; Juha Kere; Annika Scheynius; Cilla Söderhäll; Göran Pershagen; Jan Komorowski

Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention.


Archives of Dermatological Research | 2012

Characterization of EGFR and ErbB2 expression in atopic dermatitis patients

Annika Sääf; Andor Pivarcsi; Mårten C. G. Winge; Carl-Fredrik Wahlgren; Bernhard Homey; Magnus Nordenskjöld; Maria Tengvall-Linder; Maria Bradley

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases in industrialized countries. To identify candidate genes involved in the pathogenesis of AD, we previously undertook a genome-wide approach using DNA microarrays. A transcript encoding the epidermal growth factor receptor (EGFR) was found to be among the down-regulated transcripts in AD skin. Here, we further investigated the expression pattern of two EGFR family members (EGFR and ErbB2) in AD skin on a protein level. Immunohistochemical (IHC) analysis of EGFR and ErbB2 showed decreased expression of EGFR and ErbB2 proteins in AD lesional skin as compared to skin from healthy individuals. Interestingly, we found that EGFR and ErbB2 were reciprocally expressed in an in vitro model of keratinocyte proliferation and differentiation, paralleling the expression patterns found in epidermis of healthy skin. The highest levels of EGFR transcripts were found in proliferating cells, while ErbB2 was found in differentiated cells. We show that blocking EGFR activity combined with co-stimulation of the Th2-cytokine IL4 in keratinocytes leads to induction of the inflammatory chemokine CCL26/eotaxin-3 in vitro. Accordingly, increased CCL26 transcriptional levels were observed in AD lesional skin. Taken together, suppression of EGFR may contribute to the pathogenesis of AD via the regulation of inflammatory chemokines.


European Journal of Haematology | 2010

Characterisation of hairy cell leukaemia by tiling resolution array-based comparative Genome hybridisation: a series of 13 cases and review of the literature

Ann Nordgren; Martin Corcoran; Annika Sääf; Anna Bremer; Hanneke C. Kluin-Nelemans; Jacqueline Schoumans; Dan Grandér

Little is known about the cytogenetic features and molecular mechanisms behind hairy cell leukaemia (HCL), despite the advances in diagnosis and treatment. Therefore, we used high‐resolution genome‐wide array‐based comparative genomic hybridisation (array‐CGH) and multiplex ligation‐dependent probe amplification (MLPA) to characterise copy number alterations (CNAs) in DNA from 13 cases of HCL. We also summarise CNAs and cytogenetic features in 109 HCL cases comprising our 13 cases and 96 cases from the literature. Genomic array‐CGH revealed imbalances in two out of 13 cases in addition to previously described copy number variants (CNVs) found in healthy individuals. In one case, a 700 kb deletion of 20q11.22 was detected encompassing ten characterised genes, among them the TP53INP2, DNCL2A and ITCH genes. In the second case, trisomy 5, and a deletion of 5p15.2 encompassing a non‐characterised gene AY328033 was found. Altogether only 20/81 (25%) of all cases studied by CGH or gene dose array revealed CNAs. The most common recurrent deletions and breakpoints were 14q22–32 (33%), 6q25 (16%), 2p12 (10%), 22q11 (10%), 17p11–13 (10%), 7q32–36 (9%), 18q11–13 (7%), 1q32–44 (6%), 8p22–23 (6%) and 7q11 (6%). Trisomy 5 occurred in 15%. In addition, several other recurrent breakpoints were identified. Although a number of genomic imbalances were identified in the HCL samples, the genome appeared remarkably stable.


Human Molecular Genetics | 2014

IgA measurements in over 12 000 Swedish twins reveal sex differential heritability and regulatory locus near CD30L

Alexander Viktorin; Marcel Frankowiack; Leonid Padyukov; Zheng Chang; Erik Melén; Annika Sääf; Inger Kull; Lars Klareskog; Lennart Hammarström; Patrik K. E. Magnusson

In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus.


PLOS ONE | 2012

Genetic Variation in the Epidermal Transglutaminase Genes Is Not Associated with Atopic Dermatitis

Agne Liedén; Mårten C. G. Winge; Annika Sääf; Ingrid Kockum; Elisabeth Ekelund; Elke Rodriguez; Regina Fölster-Holst; Andre Franke; Thomas Illig; Maria Tengvall-Linder; Hansjörg Baurecht; Stephan Weidinger; Carl-Fredrik Wahlgren; Magnus Nordenskjöld; Maria Bradley

Background Atopic dermatitis (AD) is a common chronic inflammatory skin disorder where epidermal barrier dysfunction is a major factor in the pathogenesis. The identification of AD susceptibility genes related to barrier dysfunction is therefore of importance. The epidermal transglutaminases (TGM1, TGM3 and TGM5) encodes essential cross-linking enzymes in the epidermis. Objective To determine whether genetic variability in the epidermal transglutaminases contributes to AD susceptibility. Methods Forty-seven single nucleotide polymorphisms (SNPs) in the TGM1, TGM3 and TGM5 gene region were tested for genetic association with AD, independently and in relation to FLG genotype, using a pedigree disequilibrium test (PDT) in a Swedish material consisting of 1753 individuals from 539 families. In addition, a German case-control material, consisting of 533 AD cases and 1996 controls, was used for in silico analysis of the epidermal TGM regions. Gene expression of the TGM1, TGM3 and TGM5 gene was investigated by relative quantification with Real Time PCR (qRT-PCR). Immunohistochemical (IHC) analysis was performed to detect TG1, TG3 and TG5 protein expression in the skin of patients and healthy controls. Results PDT analysis identified a significant association between the TGM1 SNP rs941505 and AD with allergen-specific IgE in the Swedish AD family material. However, the association was not replicated in the German case-control material. No significant association was detected for analyzed SNPs in relation to FLG genotype. TG1, TG3 and TG5 protein expression was detected in AD skin and a significantly increased TGM3 mRNA expression was observed in lesional skin by qRT-PCR. Conclusion Although TGM1 and TGM3 may be differentially expressed in AD skin, the results from the genetic analysis suggest that genetic variation in the epidermal transglutaminases is not an important factor in AD susceptibility.

Collaboration


Dive into the Annika Sääf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magnus Nordenskjöld

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Charlotte Braun-Fahrländer

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Anna Gref

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Carl-Fredrik Wahlgren

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge