Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Gref is active.

Publication


Featured researches published by Anna Gref.


Environmental Health Perspectives | 2014

GSTP1 and TNF Gene Variants and Associations between Air Pollution and Incident Childhood Asthma: The Traffic, Asthma and Genetics (TAG) Study

Elaina MacIntyre; Michael Brauer; Erik Melén; Carl Peter Bauer; Mario Bauer; Dietrich Berdel; Anna Bergström; Bert Brunekreef; Moira Chan-Yeung; Claudia Klümper; Elaine Fuertes; Ulrike Gehring; Anna Gref; Joachim Heinrich; Olf Herbarth; Marjan Kerkhof; Gerard H. Koppelman; Anita L. Kozyrskyj; Göran Pershagen; Dirkje S. Postma; Elisabeth Thiering; Carla M.T. Tiesler; Chris Carlsten

Background: Genetics may partially explain observed heterogeneity in associations between traffic-related air pollution and incident asthma. Objective: Our aim was to investigate the impact of gene variants associated with oxidative stress and inflammation on associations between air pollution and incident childhood asthma. Methods: Traffic-related air pollution, asthma, wheeze, gene variant, and potential confounder data were pooled across six birth cohorts. Parents reported physician-diagnosed asthma and wheeze from birth to 7–8 years of age (confirmed by pediatric allergist in two cohorts). Individual estimates of annual average air pollution [nitrogen dioxide (NO2), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, ozone] were assigned to each child’s birth address using land use regression, atmospheric modeling, and ambient monitoring data. Effect modification by variants in GSTP1 (rs1138272/Ala114Val and rs1695/IIe105Val) and TNF (rs1800629/G-308A) was investigated. Results: Data on asthma, wheeze, potential confounders, at least one SNP of interest, and NO2 were available for 5,115 children. GSTP1 rs1138272 and TNF rs1800629 SNPs were associated with asthma and wheeze, respectively. In relation to air pollution exposure, children with one or more GSTP1 rs1138272 minor allele were at increased risk of current asthma [odds ratio (OR) = 2.59; 95% CI: 1.43, 4.68 per 10 μg/m3 NO2] and ever asthma (OR = 1.64; 95% CI: 1.06, 2.53) compared with homozygous major allele carriers (OR = 0.95; 95% CI: 0.68, 1.32 for current and OR = 1.20; 95% CI: 0.98, 1.48 for ever asthma; Bonferroni-corrected interaction p = 0.04 and 0.01, respectively). Similarly, for GSTP1 rs1695, associations between NO2 and current and ever asthma had ORs of 1.43 (95% CI: 1.03, 1.98) and 1.36 (95% CI: 1.08, 1.70), respectively, for minor allele carriers compared with ORs of 0.82 (95% CI: 0.52, 1.32) and 1.12 (95% CI: 0.84, 1.49) for homozygous major allele carriers (Bonferroni-corrected interaction p-values 0.48 and 0.09). There were no clear differences by TNF genotype. Conclusions: Children carrying GSTP1 rs1138272 or rs1695 minor alleles may constitute a susceptible population at increased risk of asthma associated with air pollution. Citation: MacIntyre EA, Brauer M, Melén E, Bauer CP, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Klümper C, Fuertes E, Gehring U, Gref A, Heinrich J, Herbarth O, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Postma DS, Thiering E, Tiesler CM, Carlsten C, TAG Study Group. 2014. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) Study. Environ Health Perspect 122:418–424; http://dx.doi.org/10.1289/ehp.1307459


Human Molecular Genetics | 2015

Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus

Nathalie Acevedo; Lovisa E. Reinius; Dario Greco; Anna Gref; Christina Orsmark-Pietras; Helena Persson; Göran Pershagen; Gunilla Hedlin; Erik Melén; Annika Scheynius; Juha Kere; Cilla Söderhäll

Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5′ UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8+ T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression.


PLOS ONE | 2013

DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors

Lovisa E. Reinius; Anna Gref; Annika Sääf; Nathalie Acevedo; Maaike Joerink; Maciej Kupczyk; Mauro D'Amato; Anna Bergström; Erik Melén; Annika Scheynius; Sven-Erik Dahlén; Göran Pershagen; Cilla Söderhäll; Juha Kere

Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.


The Journal of Allergy and Clinical Immunology | 2014

Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants

Ralf J. P. van der Valk; Liesbeth Duijts; N. J. Timpson; Muhammad T. Salam; Marie Standl; John A. Curtin; Jon Genuneit; Marjan Kerhof; Eskil Kreiner-Møller; Alejandro Cáceres; Anna Gref; Liming Liang; H. Rob Taal; Emmanuelle Bouzigon; Florence Demenais; Rachel Nadif; Carole Ober; Emma E. Thompson; Karol Estrada; Albert Hofman; André G. Uitterlinden; Cornelia van Duijn; Fernando Rivadeneira; Xia Li; Sandrah P. Eckel; Kiros Berhane; W. James Gauderman; Raquel Granell; David Evans; Beate St Pourcain

BACKGROUND The fraction of exhaled nitric oxide (Feno) value is a biomarker of eosinophilic airway inflammation and is associated with childhood asthma. Identification of common genetic variants associated with childhood Feno values might help to define biological mechanisms related to specific asthma phenotypes. OBJECTIVE We sought to identify the genetic variants associated with childhood Feno values and their relation with asthma. METHODS Feno values were measured in children age 5 to 15 years. In 14 genome-wide association studies (N = 8,858), we examined the associations of approximately 2.5 million single nucleotide polymorphisms (SNPs) with Feno values. Subsequently, we assessed whether significant SNPs were expression quantitative trait loci in genome-wide expression data sets of lymphoblastoid cell lines (n = 1,830) and were related to asthma in a previously published genome-wide association data set (cases, n = 10,365; control subjects: n = 16,110). RESULTS We identified 3 SNPs associated with Feno values: rs3751972 in LYR motif containing 9 (LYRM9; P = 1.97 × 10(-10)) and rs944722 in inducible nitric oxide synthase 2 (NOS2; P = 1.28 × 10(-9)), both of which are located at 17q11.2-q12, and rs8069176 near gasdermin B (GSDMB; P = 1.88 × 10(-8)) at 17q12-q21. We found a cis expression quantitative trait locus for the transcript soluble galactoside-binding lectin 9 (LGALS9) that is in linkage disequilibrium with rs944722. rs8069176 was associated with GSDMB and ORM1-like 3 (ORMDL3) expression. rs8069176 at 17q12-q21, but not rs3751972 and rs944722 at 17q11.2-q12, were associated with physician-diagnosed asthma. CONCLUSION This study identified 3 variants associated with Feno values, explaining 0.95% of the variance. Identification of functional SNPs and haplotypes in these regions might provide novel insight into the regulation of Feno values. This study highlights that both shared and distinct genetic factors affect Feno values and childhood asthma.


American Journal of Respiratory and Critical Care Medicine | 2017

Genome-wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

Anna Gref; Simon Kebede Merid; Olena Gruzieva; Stephane Ballereau; Allan B. Becker; Tom Bellander; Anna Bergström; Yohan Bossé; Matteo Bottai; Moira Chan-Yeung; Elaine Fuertes; Despo Ierodiakonou; Ruiwei Jiang; Stéphane Joly; Meaghan J. Jones; Michael S. Kobor; Michal Korek; Anita L. Kozyrskyj; Ashish Kumar; Nathanaël Lemonnier; Elaina MacIntyre; Camille Ménard; David C. Nickle; Ma'en Obeidat; Johann Pellet; Marie Standl; Annika Sääf; Cilla Söderhäll; Carla M.T. Tiesler; Maarten van den Berge

Rationale: The evidence supporting an association between traffic‐related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene‐environment interaction effects on childhood asthma using genome‐wide single‐nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome‐wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look‐up for interaction in two separate North American cohorts, CHS (Childrens Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look‐up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP‐Gal:betaGlcNAc &bgr;‐1,4‐galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene‐environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


Clinical & Experimental Allergy | 2017

Dietary total antioxidant capacity in early school age and subsequent allergic disease

Anna Gref; Susanne Rautiainen; Olena Gruzieva; Niclas Håkansson; Inger Kull; Göran Pershagen; Magnus Wickman; Alicja Wolk; Erik Melén; Anna Bergström

Dietary antioxidant intake has been hypothesized to influence the development of allergic diseases; however, few prospective studies have investigated this association.


Allergy | 2013

Glutathione-S-transferase P1, early exposure to mould in relation to respiratory and allergic health outcomes in children from six birth cohorts. A meta-analysis

Christina Tischer; Anna Gref; Marie Standl; Mario Bauer; Anna Bergström; Michael Brauer; Chris Carlsten; Ulrike Gehring; Raquel Granell; John Henderson; Marjan Kerkhof; Meaghan J. MacNutt; Erik Melén; Magnus Wickman; Joachim Heinrich

There are conflicting study results regarding the association of exposure to visible mould and fungal components in house dust with respiratory and allergic diseases in children. It has been suggested that functional polymorphisms of the GSTP1 gene may influence the risk for allergic disorders through an impaired defence against oxidant injury.


Pediatric Allergy and Immunology | 2018

Atopic dermatitis: Interaction between genetic variants of GSTP1,TNF,TLR2, and TLR4 and air pollution in early life

Anke Hüls; Claudia Klümper; Elaina MacIntyre; Michael Brauer; Erik Melén; Mario Bauer; Dietrich Berdel; Anna Bergström; Bert Brunekreef; Moira Chan-Yeung; Elaine Fuertes; Ulrike Gehring; Anna Gref; Joachim Heinrich; Marie Standl; Irina Lehmann; Marjan Kerkhof; Gerard H. Koppelman; Anita L. Kozyrskyj; Göran Pershagen; Chris Carlsten; Ursula Krämer; Tamara Schikowski

Associations between traffic‐related air pollution (TRAP) and childhood atopic dermatitis (AD) remain inconsistent, possibly due to unexplored gene‐environment interactions. The aim of this study was to examine whether a potential effect of TRAP on AD prevalence in children is modified by selected single nucleotide polymorphisms (SNPs) related to oxidative stress and inflammation.


Environmental Health Perspectives | 2017

Exposure to Traffic-Related Air Pollution and Serum Inflammatory Cytokines in Children

Olena Gruzieva; Simon Kebede Merid; Anna Gref; Ashwini Gajulapuri; Nathanaël Lemonnier; Stephane Ballereau; Bruna Gigante; Juha Kere; Charles Auffray; Erik Melén; Göran Pershagen


European Respiratory Journal | 2015

An integrative genomics approach identifies new asthma pathways related to air pollution exposure

Anna Gref; Simon Kebede Merid; Olena Gruzieva; Cheng-Jian Xu; Gerard H. Koppelman; Erik Melén

Collaboration


Dive into the Anna Gref's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge