Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annukka M. Kivelä is active.

Publication


Featured researches published by Annukka M. Kivelä.


Journal of Biological Chemistry | 2009

Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: Identification of heat shock response as the major pathway activated by nitro-oleic acid

Emilia Kansanen; Henna-Kaisa Jyrkkänen; Oscar L. Volger; Hanna Leinonen; Annukka M. Kivelä; Sanna-Kaisa Häkkinen; Steven R. Woodcock; Francisco J. Schopfer; Anton J.G. Horrevoets; Seppo Ylä-Herttuala; Bruce A. Freeman; Anna-Liisa Levonen

Electrophilic fatty acid derivatives, including nitrolinoleic acid and nitro-oleic acid (OA-NO2), can mediate anti-inflammatory and pro-survival signaling reactions. The transcription factor Nrf2, activated by electrophilic fatty acids, suppresses redox-sensitive pro-inflammatory gene expression and protects against vascular endothelial oxidative injury. It was therefore postulated that activation of Nrf2 by OA-NO2 accounts in part for its anti-inflammatory actions, motivating the characterization of Nrf2-dependent and -independent effects of OA-NO2 on gene expression using genome-wide transcriptional profiling. Control and Nrf2-small interfering RNA-transfected human endothelial cells were treated with vehicle, oleic acid, or OA-NO2, and differential gene expression profiles were determined. Although OA-NO2 significantly induced the expression of Nrf2-dependent genes, including heme oxygenase-1 and glutamate-cysteine ligase modifier subunit, the majority of OA-NO2-regulated genes were regulated by Nrf2-independent pathways. Moreover, gene set enrichment analysis revealed that the heat shock response is the major pathway activated by OA-NO2, with robust induction of a number of heat shock genes regulated by the heat shock transcription factor. Inasmuch as the heat shock response mediates anti-inflammatory and cytoprotective actions, this mechanism is proposed to contribute to the protective cell signaling functions of nitro-fatty acids and other electrophilic fatty acid derivatives.


Circulation Research | 2008

Nrf2 Regulates Antioxidant Gene Expression Evoked by Oxidized Phospholipids in Endothelial Cells and Murine Arteries In Vivo

Henna-Kaisa Jyrkkänen; Emilia Kansanen; Matias Inkala; Annukka M. Kivelä; Hanna Hurttila; Suvi E. Heinonen; Gundars Goldsteins; Suvi Jauhiainen; Satu Tiainen; Harri Makkonen; Olga Oskolkova; Taras Afonyushkin; Jari Koistinaho; Masayuki Yamamoto; Valery N. Bochkov; Seppo Ylä-Herttuala; Anna-Liisa Levonen

Besides their well-characterized proinflammatory and proatherogenic effects, oxidized phospholipids, such as oxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine) have been shown to have beneficial responses in vascular cells via induction of antioxidant enzymes such as heme oxygenase-1. We therefore hypothesized that oxPAPC could evoke a general cytoprotective response via activation of antioxidative transcription factor Nrf2. Here, we show that oxPAPC increases nuclear accumulation of Nrf2. Using the small interfering RNA approach, we demonstrate that Nrf2 is critical in mediating the induction of glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H quinone oxidoreductase-1 (NQO1) by oxPAPC in human endothelial cells, whereas the contribution to the induction of heme oxygenase-1 was less significant. The induction of GCLM and NQO1 was attenuated by reduction of electrophilic groups with sodium borohydrate, as well as treatment with thiol antioxidant N-acetylcysteine, suggesting that the thiol reactivity of oxPAPC is largely mediating its effect on Nrf2-responsive genes. Moreover, we show that oxidized phospholipid having a highly electrophilic isoprostane ring in its sn-2 position is a potent inducer of Nrf2 target genes. Finally, we demonstrate that the oxPAPC-inducible expression of heme oxygenase-1, GCLM, and NQO1 is lower in Nrf2-null than wild-type mouse carotid arteries in vivo. We suggest that the activation of Nrf2 by oxidized phospholipids provides a mechanism by which their deleterious effects are limited in the vasculature.


Free Radical Biology and Medicine | 2009

Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12,14-prostaglandin J2

Emilia Kansanen; Annukka M. Kivelä; Anna-Liisa Levonen

The J series of cyclopentenone prostaglandins (PGs) such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) are electrophilic lipid signaling mediators derived from the nonenzymatic dehydration of PGD(2), a major product of the cyclooxygenase pathway. The biological actions of 15d-PGJ(2) are attributed to its ability to form covalent adducts with thiol residues within specific signaling proteins, thus triggering redox-sensitive cell signaling pathways. One of the signaling pathways potently activated by 15d-PGJ(2) is the Keap1-Nrf2-ARE system, which has a well-appreciated role in protecting cells from endogenous and exogenous stresses as well as anti-inflammatory effects. In this review, we give an overview of the mechanisms by which 15d-PGJ(2) activates the Keap1-Nrf2-ARE system, focusing particularly on the role of Keap1 in sensing electrophilic stress. In addition, the Nrf2-dependent anti-inflammatory and cytoprotective effects of 15d-PGJ(2) are discussed.


Atherosclerosis | 2010

Sulforaphane inhibits endothelial lipase expression through NF-κB in endothelial cells

Annukka M. Kivelä; Petri I. Mäkinen; Henna-Kaisa Jyrkkänen; Eero Mella-Aho; Yifeng Xia; Emilia Kansanen; Hanna Leinonen; Inder M. Verma; Seppo Ylä-Herttuala; Anna-Liisa Levonen

OBJECTIVE Endothelial lipase (EL) is a new member of triacylglycerol lipase family that has been shown to decrease high-density lipoprotein (HDL) cholesterol levels leading to increased risk of atherosclerosis. Its expression is increased during inflammation and by inflammatory cytokines. Sulforaphane (SFN) is a naturally occurring isothiocyanate present in cruciferous vegetables that has antioxidant and anti-inflammatory effects. Nuclear factor (NF)-κB is one of the molecular targets for SFN-mediated protective effects. Our aim was therefore to assess whether SFN could impact on EL expression via modulation of NF-κB pathway. METHODS AND RESULTS Quantitative PCR and Western blot results demonstrated that SFN inhibited tumor necrosis factor (TNF)-α-mediated induction of EL in human umbilical vein endothelial cells (HUVEC). Lentiviral transduction of HUVEC with mutated form of IκB-α (IκBM) as well as silencing of NF-κB subunit p65 using RNA interference revealed that TNF-α-mediated induction of EL is mediated through NF-κB pathway. In addition, a total of five NF-κB binding sites were found in LIPG gene, which encodes EL. SFN inhibited binding of NF-κB to these sites analyzed by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). SFN also inhibited TNF-α mediated phosphorylation of IκB kinase (IKK) 1/2 and IκB-α. CONCLUSIONS Collectively, these results indicate that SFN inhibits EL expression via inhibition of NF-κB which may have a beneficial effect on HDL cholesterol levels.


Cardiovascular Research | 2013

The effects of VEGF-A on atherosclerosis, lipoprotein profile, and lipoprotein lipase in hyperlipidaemic mouse models

Suvi E. Heinonen; Annukka M. Kivelä; Jenni Huusko; Marike H. Dijkstra; Erika Gurzeler; Petri I. Mäkinen; Pia Leppänen; Vesa M. Olkkonen; Ulf Eriksson; Matti Jauhiainen; Seppo Ylä-Herttuala

AIMS The role of vascular endothelial growth factor (VEGF-A) in atherogenesis has remained controversial. We addressed this by comparing the effects of adenoviral VEGF-A gene transfer on atherosclerosis and lipoproteins in ApoE(-/-), LDLR(-/-), LDLR(-/-)ApoE(-/-), and LDLR(-/-)ApoB(100/100) mice. METHODS AND RESULTS After 4 weeks on western diet, systemic adenoviral gene transfer was performed with hVEGF-A or control vectors. Effects on atherosclerotic lesion area and composition, lipoprotein profiles, and plasma lipoprotein lipase (LPL) activity were examined. On day 4, VEGF-A induced alterations in lipoprotein profiles and a significant negative correlation was observed between plasma LPL activity and VEGF-A levels. One month after gene transfer, no changes in atherosclerosis were observed in LDLR(-/-) and LDLR(-/-)ApoB(100/100) models, whereas both ApoE(-/-) models displayed increased en face lesion areas in thoracic and abdominal aortas. VEGF-A also reduced LPL mRNA in heart and white adipose tissue, whereas Angptl4 was increased, potentially providing further mechanistic explanation for the findings. CONCLUSION VEGF-A gene transfer induced pro-atherogenic changes in lipoprotein profiles in all models. As a novel finding, VEGF-A also reduced LPL activity, which might underlie the observed changes in lipid profiles. However, VEGF-A was observed to increase atherosclerosis only in the ApoE(-/-) background, clearly indicating some mouse model-specific effects.


Nucleic Acids Research | 2014

Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization

Minna U. Kaikkonen; Henri Niskanen; Casey E. Romanoski; Emilia Kansanen; Annukka M. Kivelä; Jarkko Laitalainen; Sven Heinz; Christopher Benner; Christopher K. Glass; Seppo Ylä-Herttuala

Vascular endothelial growth factor A (VEGF-A) is a master regulator of angiogenesis, vascular development and function. In this study we investigated the transcriptional regulation of VEGF-A-responsive genes in primary human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using genome-wide global run-on sequencing (GRO-Seq). We demonstrate that half of VEGF-A-regulated gene promoters are characterized by a transcriptionally competent paused RNA polymerase II (Pol II). We show that transition into productive elongation is a major mechanism of gene activation of virtually all VEGF-regulated genes, whereas only ∼40% of the genes are induced at the level of initiation. In addition, we report a comprehensive chromatin interaction map generated in HUVECs using tethered conformation capture (TCC) and characterize chromatin interactions in relation to transcriptional activity. We demonstrate that sites of active transcription are more likely to engage in chromatin looping and cell type-specific transcriptional activity reflects the boundaries of chromatin interactions. Furthermore, we identify large chromatin compartments with a tendency to be coordinately transcribed upon VEGF-A stimulation. We provide evidence that these compartments are enriched for clusters of regulatory regions such as super-enhancers and for disease-associated single nucleotide polymorphisms (SNPs). Collectively, these findings provide new insights into mechanisms behind VEGF-A-regulated transcriptional programs in endothelial cells.


Atherosclerosis | 2012

Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A

Annukka M. Kivelä; Marike H. Dijkstra; Suvi E. Heinonen; Erika Gurzeler; Suvi Jauhiainen; Anna-Liisa Levonen; Seppo Ylä-Herttuala

OBJECTIVE Endothelial lipase (EL) regulates HDL cholesterol levels and in inflammatory states, like atherosclerosis, EL expression is increased contributing to low HDL cholesterol. The regulation of EL expression is poorly understood and has mainly been attributed to inflammatory stimuli. As sterol regulatory element binding proteins (SREBPs) are regulators of genes involved in lipid metabolism, we hypothesized that EL is regulated by SREBPs and that EL expression is modified by the SREBP activator vascular endothelial growth factor A (VEGF-A). METHODS and results: Quantitative PCR and Western blot results demonstrated that starvation increased EL expression in human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Also, 25-hydroxycholesterol (25HC), an inhibitor of SREBP activation inhibited EL expression. With siRNA-mediated inhibition of SREBPs the effect of starvation was shown to be SREBP-2 dependent. VEGF-A decreased EL expression in both endothelial cell lines used, most likely via inhibition of SREBP-2 binding determined by chromatin immunoprecipitation (ChIP). Furthermore, in atherosclerosis prone LDLR(-/-)ApoB(100/100) mice, systemic adenoviral gene transfer with human VEGF-A decreased EL mRNA in peripheral tissues and increased plasma HDL cholesterol. CONCLUSIONS These results identify SREBPs as novel regulators of EL expression. VEGF-A as an endogenous EL inhibitor could be therapeutically relevant in atherosclerosis by increasing systemic HDL cholesterol levels.


Expert Opinion on Biological Therapy | 2015

Prospect and progress of gene therapy in treating atherosclerosis

Annukka M. Kivelä; Jenni Huusko; Seppo Ylä-Herttuala

Introduction: Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. Areas covered: In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. Expert opinion: Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.


Journal of Lipid Research | 2015

Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation

Su Duy Nguyen; Matti Javanainen; Sami Rissanen; Hongxia Zhao; Jenni Huusko; Annukka M. Kivelä; Seppo Ylä-Herttuala; Mohamad Navab; Alan M. Fogelman; Ilpo Vattulainen; Petri T. Kovanen; Katariina Öörni

Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.


European Radiology | 2017

Primary and metastatic ovarian cancer: Characterization by 3.0T diffusion-weighted MRI

Auni Lindgren; Maarit Anttila; Suvi Rautiainen; Otso Arponen; Annukka M. Kivelä; Petri I. Mäkinen; Kirsi Härmä; Kirsi Hämäläinen; Veli-Matti Kosma; Seppo Ylä-Herttuala; Ritva Vanninen; Hanna Sallinen

AbstractObjectivesWe aimed to investigate whether apparent diffusion coefficients (ADCs) measured by 3.0T diffusion-weighted magnetic resonance imaging (DWI) associate with histological aggressiveness of ovarian cancer (OC) or predict the clinical outcome. This prospective study enrolled 40 patients with primary OC, treated 2011-2014.MethodsDWI was performed prior to surgery. Two observers used whole lesion single plane region of interest (WLsp-ROI) and five small ROIs (S-ROI) to analyze ADCs. Samples from tumours and metastases were collected during surgery. Immunohistochemistry and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure the expression of vascular endothelial growth factor (VEGF) and its receptors.ResultsThe interobserver reliability of ADC measurements was excellent for primary tumours ICC 0.912 (WLsp-ROI). Low ADCs significantly associated with poorly differentiated OC (WLsp-ROI P = 0.035). In primary tumours, lower ADCs significantly associated with high Ki-67 (P = 0.001) and low VEGF (P = 0.001) expression. In metastases, lower ADCs (WLsp-ROI) significantly correlated with low VEGF receptors mRNA levels. ADCs had predictive value; 3-year overall survival was poorer in patients with lower ADCs (WLsp-ROI P = 0.023, S-ROI P = 0.038).ConclusionReduced ADCs are associated with histological severity and worse outcome in OC. ADCs measured with WLsp-ROI may serve as a prognostic biomarker of OC.Key Points• Reduced ADCs correlate with prognostic markers: poor differentiation and high Ki-67 expression • ADCs also significantly correlated with VEGF protein expression in primary tumours • Lower ADC values are associated with poorer survival in ovarian cancer • Whole lesion single plane-ROI ADCs may be used as a prognostic biomarker in OC

Collaboration


Dive into the Annukka M. Kivelä's collaboration.

Top Co-Authors

Avatar

Seppo Ylä-Herttuala

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Anna-Liisa Levonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Emilia Kansanen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jenni Huusko

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Erika Gurzeler

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marike H. Dijkstra

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suvi E. Heinonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Petri I. Mäkinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Vesa M. Olkkonen

Minerva Foundation Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge