Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seppo Ylä-Herttuala is active.

Publication


Featured researches published by Seppo Ylä-Herttuala.


Nature | 2010

Vascular endothelial growth factor B controls endothelial fatty acid uptake

Carolina E. Hagberg; Annelie Falkevall; Xun Wang; Erik Larsson; Jenni Huusko; Ingrid Nilsson; Laurens A. van Meeteren; Erik Samén; Li Lu; Maarten Vanwildemeersch; Joakim Klar; Guillem Genové; Kristian Pietras; Sharon Stone-Elander; Lena Claesson-Welsh; Seppo Ylä-Herttuala; Per Lindahl; Ulf Eriksson

The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb-/- mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

Fan Zhang; Zhongshu Tang; Xu Hou; Johan Lennartsson; Yang Li; Alexander W. Koch; Pierre Scotney; Chunsik Lee; Pachiappan Arjunan; Lijin Dong; Anil Kumar; Tuomas T. Rissanen; Bin Wang; Nobuo Nagai; Pierre Fons; Robert N. Fariss; Yongqing Zhang; Eric F. Wawrousek; Ginger Tansey; James Raber; Guo-Hua Fong; Hao Ding; David A. Greenberg; Kevin G. Becker; Jean-Marc Herbert; Andrew D. Nash; Seppo Ylä-Herttuala; Yihai Cao; Ryan J. Watts; Xuri Li

VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases.


Biochimica et Biophysica Acta | 2009

Epigenetics and atherosclerosis.

Mikko P. Turunen; Einari Aavik; Seppo Ylä-Herttuala

The contribution of epigenetic mechanisms to cardiovascular diseases remains poorly understood. Hypomethylation of genomic DNA is present in human atherosclerotic lesions and methylation changes also occur at the promoter level of several genes involved in the pathogenesis of atherosclerosis, such as extracellular superoxide dismutase, estrogen receptor-alpha, endothelial nitric oxide synthase and 15-lipoxygenase. So far, no clear data is available about histone modification marks in atherosclerotic lesions. It remains unclear whether epigenetic changes are causally related to the pathogenetic features, such as clonal proliferation of lesion smooth muscle cells, lipid accumulation and modulation of immune responses in the lesions, or whether they merely represent a consequence of the ongoing pathological process. However, epigenetic changes could at least partly explain poorly understood environmental and dietary effects on atherogenesis and the rapid increases and decreases in the incidence of coronary heart disease observed in various populations. RNAi mechanisms may also contribute to the epigenetic regulation of vascular cells. Therapies directed towards modification of the epigenetic status of vascular cells might provide new tools to control atherosclerosis-related cardiovascular diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease

Katja M. Kanninen; Riikka Heikkinen; Tarja Malm; Taisia Rolova; Susanna Kuhmonen; Hanna Leinonen; Seppo Ylä-Herttuala; Heikki Tanila; Anna-Liisa Levonen; Milla Koistinaho; Jari Koistinaho

The amyloid hypothesis of Alzheimers disease (AD) postulates that amyloid-β (Aβ) deposition and neurotoxicity play a causative role in AD; oxidative injury is thought to be central in the pathogenesis. An endogenous defense system against oxidative stress is induced by binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to the antioxidant response element (ARE) enhancer sequence. The Nrf2-ARE pathway is activated in response to reactive oxygen species to trigger the simultaneous expression of numerous protective enzymes and scavengers. To exploit the Nrf2-ARE pathway therapeutically, we delivered Nrf2 bilaterally into the hippocampus of 9-month-old transgenic AD mice (APP/PS1 mice) using a lentiviral vector encoding human Nrf2. The data indicate that significant reductions in spatial learning deficits of aged APP/PS1 mice in a Morris Water Maze can be achieved by modulating levels of Nrf2 in the brain. Memory improvement in APP/PS1 mice after Nrf2 transduction shifts the balance between soluble and insoluble Aβ toward an insoluble Aβ pool without concomitant change in total brain Aβ burden. Nrf2 gene transfer is associated with a robust reduction in astrocytic but not microglial activation and induction of Nrf2 target gene heme oxygenase 1, indicating overall activation of the Nrf2-ARE pathway in hippocampal neurons 6 months after injection. Results warrant further exploration of the Nrf2-ARE pathway for treatment of AD and suggest that the Nrf2-ARE pathway may represent a potential therapeutic strategy to pursue in AD in humans, particularly in view of the multiple mechanisms by which Nrf2 can exert its protective effects.


Circulation | 2009

Vascular Endothelial Growth Factor-B Induces Myocardium-Specific Angiogenesis and Arteriogenesis via Vascular Endothelial Growth Factor Receptor-1– and Neuropilin Receptor-1–Dependent Mechanisms

Johanna Lähteenvuo; Markku Lähteenvuo; Antti Kivelä; Carolina Rosenlew; Annelie Falkevall; Joakim Klar; Tommi Heikura; Tuomas T. Rissanen; Elisa Vähäkangas; Petra Korpisalo; Berndt Enholm; Peter Carmeliet; Kari Alitalo; Ulf J. Eriksson; Seppo Ylä-Herttuala

Background— New revascularization therapies are urgently needed for patients with severe coronary heart disease who lack conventional treatment options. Methods and Results— We describe a new proangiogenic approach for these no-option patients using adenoviral (Ad) intramyocardial vascular endothelial growth factor (VEGF)-B186 gene transfer, which induces myocardium-specific angiogenesis and arteriogenesis in pigs and rabbits. After acute infarction, AdVEGF-B186 increased blood vessel area, perfusion, ejection fraction, and collateral artery formation and induced changes toward an ischemia-resistant myocardial phenotype. Soluble VEGF receptor-1 and soluble neuropilin receptor-1 reduced the effects of AdVEGF-B186, whereas neither soluble VEGF receptor-2 nor inhibition of nitric oxide production had this result. The effects of AdVEGF-B186 involved activation of neuropilin receptor-1, which is highly expressed in the myocardium, via recruitment of G-protein-&agr; interacting protein, terminus C (GIPC) and upregulation of G-protein-&agr; interacting protein. AdVEGF-B186 also induced an antiapoptotic gene expression profile in cardiomyocytes and had metabolic effects by inducing expression of fatty acid transport protein-4 and lipid and glycogen accumulation in the myocardium. Conclusions— VEGF-B186 displayed strikingly distinct effects compared with other VEGFs. These effects may be mediated at least in part via a G-protein signaling pathway. Tissue-specificity, high efficiency in ischemic myocardium, and induction of arteriogenesis and antiapoptotic and metabolic effects make AdVEGF-B186 a promising candidate for the treatment of myocardial ischemia.


Journal of Biological Chemistry | 2009

Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: Identification of heat shock response as the major pathway activated by nitro-oleic acid

Emilia Kansanen; Henna-Kaisa Jyrkkänen; Oscar L. Volger; Hanna Leinonen; Annukka M. Kivelä; Sanna-Kaisa Häkkinen; Steven R. Woodcock; Francisco J. Schopfer; Anton J.G. Horrevoets; Seppo Ylä-Herttuala; Bruce A. Freeman; Anna-Liisa Levonen

Electrophilic fatty acid derivatives, including nitrolinoleic acid and nitro-oleic acid (OA-NO2), can mediate anti-inflammatory and pro-survival signaling reactions. The transcription factor Nrf2, activated by electrophilic fatty acids, suppresses redox-sensitive pro-inflammatory gene expression and protects against vascular endothelial oxidative injury. It was therefore postulated that activation of Nrf2 by OA-NO2 accounts in part for its anti-inflammatory actions, motivating the characterization of Nrf2-dependent and -independent effects of OA-NO2 on gene expression using genome-wide transcriptional profiling. Control and Nrf2-small interfering RNA-transfected human endothelial cells were treated with vehicle, oleic acid, or OA-NO2, and differential gene expression profiles were determined. Although OA-NO2 significantly induced the expression of Nrf2-dependent genes, including heme oxygenase-1 and glutamate-cysteine ligase modifier subunit, the majority of OA-NO2-regulated genes were regulated by Nrf2-independent pathways. Moreover, gene set enrichment analysis revealed that the heat shock response is the major pathway activated by OA-NO2, with robust induction of a number of heat shock genes regulated by the heat shock transcription factor. Inasmuch as the heat shock response mediates anti-inflammatory and cytoprotective actions, this mechanism is proposed to contribute to the protective cell signaling functions of nitro-fatty acids and other electrophilic fatty acid derivatives.


Circulation-cardiovascular Imaging | 2009

Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice.

Iina Laitinen; Antti Saraste; Eliane Weidl; Thorsten Poethko; Axel W. Weber; Stephan G. Nekolla; Pia Leppänen; Seppo Ylä-Herttuala; Gabriele Hölzlwimmer; Axel Walch; Irene Esposito; Wester Hj; Juhani Knuuti; Markus Schwaiger

Background—18F-Galacto-RGD is a positron emission tomography (PET) tracer binding to &agr;v&bgr;3 integrin that is expressed by macrophages and endothelial cells in atherosclerotic lesions. Therefore, we evaluated 18F-galacto-RGD for imaging vascular inflammation by studying its uptake into atherosclerotic lesions of hypercholesterolemic mice in comparison to deoxyglucose. Methods and results—Hypercholesterolemic LDLR−/−ApoB100/100 mice on a Western diet and normally fed adult C57BL/6 control mice were injected with 18F-galacto-RGD and 3H-deoxyglucose followed by imaging with a small animal PET/CT scanner. The aorta was dissected 2 hours after tracer injection for biodistribution studies, autoradiography, and histology. Biodistribution of 18F-galacto-RGD was higher in the atherosclerotic than in the normal aorta. Autoradiography demonstrated focal 18F-galacto-RGD uptake in the atherosclerotic plaques when compared with the adjacent normal vessel wall or adventitia. Plaque-to-normal vessel wall ratios were comparable to those of deoxyglucose. Although angiogenesis was not detected, 18F-galacto-RGD uptake was associated with macrophage density and deoxyglucose accumulation in the plaques. Binding to atherosclerotic lesions was efficiently blocked in competition experiments. In vivo imaging visualized 18F-galacto-RGD uptake colocalizing with calcified lesions of the aortic arch as seen in CT angiography. Conclusions—18F-Galacto-RGD demonstrates specific uptake in atherosclerotic lesions of mouse aorta. In this model, its uptake was associated with macrophage density. 18F-Galacto-RGD is a potential tracer for noninvasive imaging of inflammation in atherosclerotic lesions.


Circulation Research | 2009

Efficient Regulation of VEGF Expression by Promoter-Targeted Lentiviral shRNAs Based on Epigenetic Mechanism: A Novel Example of Epigenetherapy

Mikko P. Turunen; Tiia Lehtola; Suvi E. Heinonen; Genet S. Assefa; Petra Korpisalo; Roseanne Girnary; Christopher K. Glass; Sami Väisänen; Seppo Ylä-Herttuala

Rationale: We studied a possibility that shRNAs can lead to transcriptional gene activation at the promoter level via epigenetic mechanism. Objective: The purpose of this study was to test the effects on vascular endothelial growth factor (VEGF-A) expression by promoter targeted small hairpin RNAs (shRNAs) in vitro and in experimental animals in vivo using stable local lentiviral gene transfer. Methods and Results: One shRNA was identified which strongly increased VEGF-A expression in C166 endothelial cells at mRNA and protein level whereas another shRNA decreased VEGF-A expression. Quantitative chromatin immunoprecipitation analysis revealed that the repressing shRNA caused epigenetic changes, which increased nucleosome density within the promoter and transcription start site and led to repression of VEGF-A expression. Epigenetic changes caused by the activating shRNA were opposite to those caused by the repressing shRNA. These results were confirmed in vivo in an ischemic mouse hindlimb model after local gene transfer where VEGF-A upregulation achieved by promoter-targeted shRNA increased vascularity and blood flow. Conclusions: We show that lentivirus-mediated delivery of shRNA molecules targeted to specific regions in the mVEGF-A promoter either induce or repress VEGF-A expression via epigenetic modulation. Thus, we describe a new approach of gene therapy, epigenetherapy, based on an epigenetic mechanism at the promoter level. Controlling transcription through manipulation of specific epigenetic marks provides a novel approach for the treatment of several diseases.


Lancet Oncology | 2013

Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial

Manfred Westphal; Seppo Ylä-Herttuala; John Martin; Peter C. Warnke; Philippe Menei; David Eckland; Judith Kinley; Richard Kay; Zvi Ram

BACKGROUNDnBesides the use of temozolomide and radiotherapy for patients with favourable methylation status, little progress has been made in the treatment of adult glioblastoma. Local control of the disease by complete removal increases time to progression and survival. We assessed the efficacy and safety of a locally applied adenovirus-mediated gene therapy with a prodrug converting enzyme (herpes-simplex-virus thymidine kinase; sitimagene ceradenovec) followed by intravenous ganciclovir in patients with newly diagnosed resectable glioblastoma.nnnMETHODSnFor this international, open-label, randomised, parallel group multicentre phase 3 clinical trial, we recruited patients from 38 sites in Europe. Patients were eligible if they were aged 18-70 years, had newly diagnosed supratentorial glioblastoma multiforme amenable to complete resection, and had a Karnofsky score of 70 or more at screening. We used a computer-generated randomisation sequence to allocate patients in a one-to-one ratio (with block sizes of four) to receive either surgical resection of the tumour and intraoperative perilesional injection of sitimagene ceradenovec (1u2008×u200810(12) viral particles) followed by ganciclovir (postoperatively, 5 mg/kg intravenously twice a day) in addition to standard care or resection and standard care alone. Temozolomide, not being standard in all participating countries at the time of the study, was allowed at the discretion of the treating physician. The primary endpoint was a composite of time to death or re-intervention, adjusted for temozolamide use, assessed by intention-to-treat (ITT) analysis. This trial is registered with EudraCT, number 2004-000464-28.nnnFINDINGSnBetween Nov 3, 2005, and April 16, 2007, 250 patients were recruited and randomly allocated: 124 to the experimental group and 126 to the standard care group, of whom 119 and 117 patients, respectively, were included in the ITT analyses. Median time to death or re-intervention was longer in the experimental group (308 days, 95% CI 283-373) than in the control group (268 days, 210-313; hazard ratio [HR] 1·53, 95% CI 1·13-2·07; p=0·006). In a subgroup of patients with non-methylated MGMT, the HR was 1·72 (95% CI 1·15-2·56; p=0·008). However, there was no difference between groups in terms of overall survival (median 497 days, 95% CI 369-574 for the experimental group vs 452 days, 95% CI 437-558 for the control group; HR 1·18, 95% CI 0·86-1·61, p=0·31). More patients in the experimental group had one or more treatment-related adverse events those in the control group (88 [71%] vs 51 [43%]). The most common grade 3-4 adverse events were hemiparesis (eight in the experimental group vs three in the control group) and aphasia (six vs two).nnnINTERPRETATIONnOur findings suggest that use of sitimagene ceradenovec and ganciclovir after resection can increase time to death or re-intervention in patients with newly diagnosed supratentorial glioblastoma multiforme, although the intervention did not improve overall survival. Locally delivered gene therapy for glioblastoma should be further developed, especially for patients who are unlikely to respond to standard chemotherapy.nnnFUNDINGnArk Therapeutics Ltd.


Circulation Research | 2009

Activated Forms of VEGF-C and VEGF-D Provide Improved Vascular Function in Skeletal Muscle

Andrey Anisimov; Annamari Alitalo; Petra Korpisalo; Jarkko Soronen; Seppo Kaijalainen; Veli-Matti Leppänen; Michael Jeltsch; Seppo Ylä-Herttuala; Kari Alitalo

The therapeutic potential of vascular endothelial growth factor (VEGF)-C and VEGF-D in skeletal muscle has been of considerable interest as these factors have both angiogenic and lymphangiogenic activities. Previous studies have mainly used adenoviral gene delivery for short-term expression of VEGF-C and VEGF-D in pig, rabbit, and mouse skeletal muscles. Here we have used the activated mature forms of VEGF-C and VEGF-D expressed via recombinant adeno-associated virus (rAAV), which provides stable, long-lasting transgene expression in various tissues including skeletal muscle. Mouse tibialis anterior muscle was transduced with rAAV encoding human or mouse VEGF-C or VEGF-D. Two weeks later, immunohistochemical analysis showed increased numbers of both blood and lymph vessels, and Doppler ultrasound analysis indicated increased blood vessel perfusion. The lymphatic vessels further increased at the 4-week time point were functional, as shown by FITC-lectin uptake and transport. Furthermore, receptor activation and arteriogenic activity were increased by an alanine substitution mutant of human VEGF-C (C137A) having an increased dimer stability and by a chimeric CAC growth factor that contained the VEGF receptor-binding domain flanked by VEGF-C propeptides, but only the latter promoted significantly more blood vessel perfusion when compared to the other growth factors studied. We conclude that long-term expression of VEGF-C and VEGF-D in skeletal muscle results in the generation of new functional blood and lymphatic vessels. The therapeutic value of intramuscular lymph vessels in draining tissue edema and lymphedema can now be evaluated using this model system.

Collaboration


Dive into the Seppo Ylä-Herttuala's collaboration.

Top Co-Authors

Avatar

Kari J. Airenne

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Korpisalo

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Svetlana Laidinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tommi Heikura

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Haritha Samaranayake

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann-Marie Määttä

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Annukka M. Kivelä

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge