Anny Fortin
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anny Fortin.
The New England Journal of Medicine | 2011
Sophie Hambleton; Sandra Salem; Jacinta Bustamante; Venetia Bigley; Stéphanie Boisson-Dupuis; Joana Azevedo; Anny Fortin; Muzlifah Haniffa; Lourdes Ceron-Gutierrez; Chris M. Bacon; Geetha Menon; Céline Trouillet; David McDonald; Peter Carey; Florent Ginhoux; Laia Alsina; Timothy Zumwalt; Xiao-Fei Kong; Dinakantha Kumararatne; Karina Butler; Marjorie Hubeau; Jacqueline Feinberg; Saleh Al-Muhsen; Andrew J. Cant; Laurent Abel; Damien Chaussabel; Rainer Doffinger; Eduardo Talesnik; Anete Sevciovic Grumach; Alberto José da Silva Duarte
BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).
Nature Genetics | 2003
Gundula Min-Oo; Anny Fortin; Mifong Tam; André Nantel; Mary M. Stevenson; Philippe Gros
The global health impact of malaria is enormous, with an estimated 300–500 million clinical cases and 1 million annual deaths. In humans, initial susceptibility to infection with Plasmodium species, disease severity and ultimate outcome of malaria (self-healing or lethal) are under complex genetic control. Alleles associated with sickle cell anemia, β-thalassemia and deficiency in glucose-6-phosphate dehydrogenase have a protective effect against malaria and may have been retained by positive selection in areas of endemic malaria. Likewise, genetic variations in erythrocyte antigens and levels of host cytokines affect type and severity of disease. A mouse model of infection with Plasmodium chabaudi was used to study the genetic component of malaria susceptibility. Segregation analyses in informative F2 crosses derived from resistant C57BL/6J and susceptible A/J, C3H and SJL strains using extent of blood stage replication of the parasite and survival as traits mapped three P. chabaudi resistance (Char) loci on chromosomes 9 (Char1), 8 (Char2) and 17 (Char3, MHC-linked). Recombinant congenic strains AcB55 and AcB61 are unusually resistant to malaria despite carrying susceptibility alleles at Char1 and Char2. Malaria resistance in AcB55 and AcB61 is associated with splenomegaly and constitutive reticulocytosis, is inherited in an autosomal recessive fashion and is controlled by a locus on chromosome 3 (Char4). Sequencing of candidate genes from the Char4 region identified a loss-of-function mutation (269T→A, resulting in the amino acid substitution I90N) in the pyruvate kinase gene (Pklr) that underlies the malaria resistance in AcB55 and AcB61. These results suggest that pyruvate kinase deficiency may similarly protect humans against malaria.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Anny Fortin; Lon R. Cardon; Mifong Tam; Emil Skamene; Mary M. Stevenson; Philippe Gros
The genetic component of susceptibility to malaria is complex, both in humans and in the mouse model of infection. Two murine loci on chromosomes 8 (Pchr/Char2) and 9 (Char1) have previously been mapped in F2 crosses, and play an important role in regulating blood parasitemia and survival to infection with Plasmodium chabaudi. These loci explain only part of the interstrain phenotypic variance, and their penetrance and expressivity vary in different inbred strains. Novel loci regulating response to P. chabaudi infection were investigated by using an alternative strategy based on a newly derived set of AcB/BcA recombinant congenic strains bred from malaria-susceptible A/J (A) and resistant C57BL/6J (B6). One of the AcB strains, AcB55, is shown to be highly resistant to infection despite 83% susceptible A genomic composition, including susceptibility alleles at Char1 and Pchr/Char2. Early onset of parasite clearance in AcB55 is associated with lower peak parasitemia and absence of mortality. Linkage analysis in an informative (AcB55 × A)F2 population, using peak parasitemia as a quantitative trait, located a new B6-derived resistance locus on chromosome 3 (lod score = 6.57) that we designate Char4. A second, suggestive linkage on chromosome 10 (lod score = 2.53) shows additive effect with Char4 on peak parasitemia. Char4 maps to a small congenic B6 fragment in AcB55 that should facilitate the search for candidate genes. Our findings provide an entry point for parallel association studies in humans between the syntenic 4q21–4q25 region and susceptibility to disease in endemic areas of malaria.
Genes and Immunity | 2002
Anny Fortin; Mary M. Stevenson; Philippe Gros
Malaria is a major infectious disease worldwide, with over 1 million deaths in African children every year. The molecular pathways of pathogenesis of the Plasmodium parasite and the host mechanisms of defense against this infection remain poorly understood. Epidemiological studies, together with linkage analyses in endemic areas have clearly pointed at a genetic component of innate susceptibility and severity of disease. In humans, this genetic trait is complex, and has been studied in a mouse experimental model over the past few years. Inbred strains of mice show different degrees of susceptibility to infection with Plasmodium chabaudi, and the genetic component of these inter-strain differences has been studied in standard informative backcross and F2 populations, as well as in recombinant inbred strains and more recently, in recombinant congenic strains. These studies have shown that genetic susceptibility to malaria is also complex in mice, and have led to the mapping of major susceptibility Char (Chabaudi resistance) loci, located on chromosomes 9 (Char1), 8 (Char2), 17 (Char3) and 3 (Char4).
Journal of Experimental Medicine | 2007
Gundula Min-Oo; Anny Fortin; Giuseppina Pitari; Mifong Tam; Mary M. Stevenson; Philippe Gros
Mouse strains AcB55 and AcB61 are resistant to malaria by virtue of a mutation in erythrocyte pyruvate kinase (PklrI90N). Linkage analysis in [AcB55 × A/J] F2 mice detected a second locus (Char9; logarithm of odds = 4.74) that regulates the blood-stage replication of Plasmodium chabaudi AS independently of Pklr. We characterized the 77 genes of the Char9 locus for tissue-specific expression, strain-specific alterations in gene expression, and polymorphic variants that are possibly associated with differential susceptibility. We identified Vnn1/Vnn3 as the likely candidates responsible for Char9. Vnn3/Vnn1 map within a conserved haplotype block and show expression levels that are strictly cis-regulated by this haplotype. The absence of Vnn messenger RNA expression and lack of pantetheinase protein activity in tissues are associated with susceptibility to malaria and are linked to a complex rearrangement in the Vnn3 promoter region. The A/J strain also carries a unique nonsense mutation that leads to a truncated protein. Vanin genes code for a pantetheinase involved in the production of cysteamine, a key regulator of host responses to inflammatory stimuli. Administration of cystamine in vivo partially corrects susceptibility to malaria in A/J mice, as measured by reduced blood parasitemia and decreased mortality. These studies suggest that pantetheinase is critical for the host response to malaria.
The Journal of Infectious Diseases | 2002
Zhong Su; Anny Fortin; Philippe Gros; Mary M. Stevenson
Opsonin-independent macrophage phagocytosis was investigated as a possible mechanism of controlling early blood-stage Plasmodium chabaudi AS infection. Early during infection, peritoneal macrophages from resistant C57BL/6 (B6) mice exhibited increased phagocytosis of parasitized red blood cells (pRBCs) and free merozoites, which was absent in mice with deficient interferon (IFN)-gamma production during infection, including susceptible A/J, interleukin (IL)-12 p40, and IFN-gamma gene knockout mice. IFN-gamma treatment of macrophages collected from B6 and A/J mice early during infection enhanced phagocytosis of pRBCs, but IL-10 treatment inhibited this function. In vitro and in vivo studies in which type I and II class A scavenger receptor-deficient mice and inhibitors of scavenger and mannose receptors were used revealed that scavenger receptors other than class A type I and II and mannose receptors may play a role in malaria parasite uptake. These results indicate that opsonin-independent phagocytosis contributes to the IFN-gamma-dependent control of acute blood-stage malaria infection.
Mammalian Genome | 2011
Rhea Longley; Clare M. Smith; Anny Fortin; Joanne Berghout; Brendan J. McMorran; Gaetan Burgio; Simon J. Foote; Philippe Gros
Malaria is a disease that infects over 500 million people, causing at least 1 million deaths every year, with the majority occurring in developing countries. The current antimalarial arsenal is becoming dulled due to the rapid rate of resistance of the parasite. However, in populations living in malaria-endemic regions there are many examples of genetic-based resistance to the severe effects of the parasite Plasmodium. Defining the genetic factors behind host resistance has been an area of great scientific interest over the last few decades; this review summarizes the current knowledge of the genetic loci involved. Perhaps the lessons learned from the natural variation in both the human populations and experimental mouse models of infection may pave the way for novel resistance-proof antimalarials.
Trends in Parasitology | 2010
Mary M. Stevenson; Philippe Gros; Martin Olivier; Anny Fortin; Lena Serghides
In a recent Opinion article [1], White and colleagues discuss the value of the murine Plasmodium berghei ANKA model in identifying pathological processes and therapeutic interventions in human cerebral malaria (HCM). This model involves P. berghei ANKA infection of inbred CBA or C57BL/6 strain mice, which develop clinical symptoms of cerebral complications including paralysis, fitting and coma with death around Day 8 post-infection [2]. Resistant mouse strains such as BALB/c mice develop hyperparasitemia and severe anemia with death occurring about 3 weeks after infection.
Genes and Immunity | 2004
Gundula Min-Oo; Anny Fortin; Mifong Tam; Pierre-Paul Gros; Mary M. Stevenson
The recombinant congenic mouse strains AcB55 and AcB61 are extremely resistant to malaria (Plasmodium chabaudi AS) despite the presence of susceptibility alleles at the known Char1/Char2 resistance loci. Resistance in AcB55 and AcB61 is controlled by a locus on chromosome 3 (Char4) shown to be allelic with or tightly linked to a loss-of-function mutation in pyruvate kinase (Pklr). AcB55 and AcB61 show important splenomegaly prior to infection caused by the expansion of the red pulp, and display histological signs of extramedullary erythropoiesis in the liver. Examination of splenic cell populations by flow cytometry demonstrates elevated numbers of TER119-positive erythroid precursor cells (>30% of total spleen cells), while RNA expression studies show elevated expression of erythrocyte-specific transcripts such as globin, transferrin receptor, and Nramp2/Slc11a2 in the spleen of both strains. Hematological profiling in both strains is consistent with the presence of anemia as evidenced by low total erythrocyte counts, decreased hemoglobin, as well as abnormally high numbers of circulating reticulocytes (15–20%). These results strongly suggest that the mutant Pklr allele (Pklr269A) of AcB55/61 strains causes hemolytic anemia compensated by constitutive erythropoiesis, which in turn protects the mice against P. chabaudi infection. The possible molecular basis of the Pklr protective effect is discussed and is under current investigation in these two strains.
Mammalian Genome | 2000
Anny Fortin; Marsha Penman; Mary M. Stevenson; Monty Krieger; Philippe Gros
The scavenger receptor (SR) family comprises a group of cell surface proteins functionally defined by their ability to bind chemically modified lipoproteins. In macrophages, the class A Type I and Type II SRs (SR-AI/II) are thought to play a key role in adherence to and phagocytosis of infectious agents. Immunoprecipitation studies show that the rat anti-SR-AI/II monoclonal antibody 2F8 detects the mature, trimeric form of the receptor expressed in peritoneal macrophages from A/J, but not from C57Bl/6J (B6) mice. Subsequent sequencing of cDNA and genomic clones indicates that SR-AI and AII of A/J and B6 mice differ in sequence at nine positions, two in the cytoplasmic domain and seven in the extracellular spacer and α-helical coiled coil domains. These sequence polymorphisms are non-conservative and produce distinct receptor molecules that differ by four charged residues and alter recognition of the receptor by the monoclonal 2F8 antibody. The B6 SR-AI/II haplotype appears unique, since most inbred strains analyzed show the A/J-type haplotype. Interestingly, several of the B6 polymorphic variant residues are conserved in human and bovine receptors, suggesting a recent divergence of the A/J haplotype. Initial studies in CHO-derived cells expressing individual receptor isoforms indicate that the A/J and B6 receptors are stable and can mature into oligomers expressed in the membrane fractions of these cells. In these transfectants, no major functional differences were detected between receptors of the two haplotypes with respect to internalization and degradation of 125I-labeled acetylated LDL. However, since SR-AI/II recognizes a large number of structurally unrelated anionic molecules, the possibility that different haplotypes may affect either binding and release of other ligands, or receptor recycling, cannot be excluded.