Mifong Tam
McGill University Health Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mifong Tam.
Nature Genetics | 2003
Gundula Min-Oo; Anny Fortin; Mifong Tam; André Nantel; Mary M. Stevenson; Philippe Gros
The global health impact of malaria is enormous, with an estimated 300–500 million clinical cases and 1 million annual deaths. In humans, initial susceptibility to infection with Plasmodium species, disease severity and ultimate outcome of malaria (self-healing or lethal) are under complex genetic control. Alleles associated with sickle cell anemia, β-thalassemia and deficiency in glucose-6-phosphate dehydrogenase have a protective effect against malaria and may have been retained by positive selection in areas of endemic malaria. Likewise, genetic variations in erythrocyte antigens and levels of host cytokines affect type and severity of disease. A mouse model of infection with Plasmodium chabaudi was used to study the genetic component of malaria susceptibility. Segregation analyses in informative F2 crosses derived from resistant C57BL/6J and susceptible A/J, C3H and SJL strains using extent of blood stage replication of the parasite and survival as traits mapped three P. chabaudi resistance (Char) loci on chromosomes 9 (Char1), 8 (Char2) and 17 (Char3, MHC-linked). Recombinant congenic strains AcB55 and AcB61 are unusually resistant to malaria despite carrying susceptibility alleles at Char1 and Char2. Malaria resistance in AcB55 and AcB61 is associated with splenomegaly and constitutive reticulocytosis, is inherited in an autosomal recessive fashion and is controlled by a locus on chromosome 3 (Char4). Sequencing of candidate genes from the Char4 region identified a loss-of-function mutation (269T→A, resulting in the amino acid substitution I90N) in the pyruvate kinase gene (Pklr) that underlies the malaria resistance in AcB55 and AcB61. These results suggest that pyruvate kinase deficiency may similarly protect humans against malaria.
Journal of Immunology | 2006
Rebecca Ing; Mariela Segura; Neeta Thawani; Mifong Tam; Mary M. Stevenson
Consistent with their seminal role in detecting infection, both mouse bone marrow-derived and splenic CD11c+ dendritic cells (DCs) exhibited higher levels of uptake of Plasmodium chabaudi-parasitized RBCs (pRBCs) than of noninfected RBCs (nRBCs) as determined by our newly developed flow cytometric technique using the dye CFSE to label RBCs before coculture with DCs. To confirm that expression of CFSE by CD11c+ cells following coculture with CFSE-labeled pRBCs represents internalization of pRBC by DCs, we showed colocalization of CFSE-labeled pRBCs and PE-labeled CD11c+ DCs by confocal fluorescence microscopy. Treatment of DCs with cytochalasin D significantly inhibited the uptake of pRBCs, demonstrating that uptake is an actin-dependent phagocytic process. The uptake of pRBCs by splenic CD11c+ DCs was significantly enhanced after infection in vivo and was associated with the induction of DC maturation, IL-12 production, and stimulation of CD4+ T cell proliferation and IFN-γ production. These results suggest that DCs selectively phagocytose pRBCs and present pRBC-derived Ags to CD4+ T cells, thereby promoting development of protective Th1-dependent immune responses to blood-stage malaria infection.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Anny Fortin; Lon R. Cardon; Mifong Tam; Emil Skamene; Mary M. Stevenson; Philippe Gros
The genetic component of susceptibility to malaria is complex, both in humans and in the mouse model of infection. Two murine loci on chromosomes 8 (Pchr/Char2) and 9 (Char1) have previously been mapped in F2 crosses, and play an important role in regulating blood parasitemia and survival to infection with Plasmodium chabaudi. These loci explain only part of the interstrain phenotypic variance, and their penetrance and expressivity vary in different inbred strains. Novel loci regulating response to P. chabaudi infection were investigated by using an alternative strategy based on a newly derived set of AcB/BcA recombinant congenic strains bred from malaria-susceptible A/J (A) and resistant C57BL/6J (B6). One of the AcB strains, AcB55, is shown to be highly resistant to infection despite 83% susceptible A genomic composition, including susceptibility alleles at Char1 and Pchr/Char2. Early onset of parasite clearance in AcB55 is associated with lower peak parasitemia and absence of mortality. Linkage analysis in an informative (AcB55 × A)F2 population, using peak parasitemia as a quantitative trait, located a new B6-derived resistance locus on chromosome 3 (lod score = 6.57) that we designate Char4. A second, suggestive linkage on chromosome 10 (lod score = 2.53) shows additive effect with Char4 on peak parasitemia. Char4 maps to a small congenic B6 fragment in AcB55 that should facilitate the search for candidate genes. Our findings provide an entry point for parallel association studies in humans between the syntenic 4q21–4q25 region and susceptibility to disease in endemic areas of malaria.
Infection and Immunity | 2003
Zhong Su; Mifong Tam; Dragana Jankovic; Mary M. Stevenson
ABSTRACT An important aspect of malaria vaccine development is the identification of an appropriate adjuvant which is both capable of stimulating a protective immune response and safe for use by humans. Here, we investigated the feasibility of using novel immunostimulatory molecules as adjuvants combined with a crude antigen preparation and coadsorbed to aluminum hydroxide (alum) as a vaccine against blood-stage Plasmodium chabaudi AS malaria. Prior to challenge infection, immunization of genetically susceptible A/J mice with the combination of malaria antigen plus recombinant interleukin-12 (IL-12) in alum induced a Th1 immune response with production of high levels of gamma interferon (IFN-γ) and diminished IL-4 levels by spleen cells stimulated in vitro with parasite antigen compared to mice immunized with antigen alone, antigen in alum, or antigen plus IL-12. Mice immunized with malaria antigen plus recombinant IL-12 in alum had high levels of total malaria-specific antibody and immunoglobulin G2a. Compared to unimmunized mice, immunization with antigen plus IL-12 in alum induced the highest level of protective immunity against challenge infection with P. chabaudi AS, which was evident as a significantly decreased peak parasitemia level and 100% survival. Protective immunity was dependent on CD4+ T cells, IFN-γ, and B cells and was long-lasting. Replacement of IL-12 as an adjuvant by synthetic oligodeoxynucleotides (ODN) containing CpG motifs induced a similar level of vaccine-induced protection against challenge infection with P. chabaudi AS. These results illustrate that it is possible to enhance the potency of a crude malaria antigen preparation delivered in alum by inclusion of immunostimulatory molecules, such as IL-12 or CpG-ODN.
Infection and Immunity | 2001
Julie Riopel; Mifong Tam; Karkada Mohan; Michael W. Marino; Mary M. Stevenson
ABSTRACT The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudiAS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-γ) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-γ levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-α) levels were significantly increased in KO mice and were significantly higher than TNF-α levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-γ and TNF-α production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.
Journal of Experimental Medicine | 2007
Gundula Min-Oo; Anny Fortin; Giuseppina Pitari; Mifong Tam; Mary M. Stevenson; Philippe Gros
Mouse strains AcB55 and AcB61 are resistant to malaria by virtue of a mutation in erythrocyte pyruvate kinase (PklrI90N). Linkage analysis in [AcB55 × A/J] F2 mice detected a second locus (Char9; logarithm of odds = 4.74) that regulates the blood-stage replication of Plasmodium chabaudi AS independently of Pklr. We characterized the 77 genes of the Char9 locus for tissue-specific expression, strain-specific alterations in gene expression, and polymorphic variants that are possibly associated with differential susceptibility. We identified Vnn1/Vnn3 as the likely candidates responsible for Char9. Vnn3/Vnn1 map within a conserved haplotype block and show expression levels that are strictly cis-regulated by this haplotype. The absence of Vnn messenger RNA expression and lack of pantetheinase protein activity in tissues are associated with susceptibility to malaria and are linked to a complex rearrangement in the Vnn3 promoter region. The A/J strain also carries a unique nonsense mutation that leads to a truncated protein. Vanin genes code for a pantetheinase involved in the production of cysteamine, a key regulator of host responses to inflammatory stimuli. Administration of cystamine in vivo partially corrects susceptibility to malaria in A/J mice, as measured by reduced blood parasitemia and decreased mortality. These studies suggest that pantetheinase is critical for the host response to malaria.
The Journal of Infectious Diseases | 2004
Kai Hsin Chang; Mifong Tam; Mary M. Stevenson
Severe anemia is a major life-threatening complication of malaria. The roles of erythropoietin (Epo) and erythropoiesis during blood-stage malaria were investigated. By treating Plasmodium chabaudi AS-infected C57BL/6 (B6) mice, which are resistant to malaria, with polyclonal anti-human Epo neutralizing antibody, we demonstrated that Epo-induced reticulocytosis was important for alleviating malarial anemia and for host survival. By inducing erythropoiesis in A/J mice, which are susceptible to malaria, and in B6 mice at various periods during infection, by use of exogenous recombinant murine Epo, untimely onset of reticulocytosis was shown to augment multiplication of parasites and result in lethal infection. However, timely inducement of reticulocytosis with Epo treatment alleviated malarial anemia and increased survival. Our data reveal the important role of Epo-induced reticulocytosis in modulating the course and outcome of blood-stage malaria. However, the mechanisms underlying the increased mortality associated with untimely treatment with Epo and the increased protection associated with timely treatment with Epo remain to be investigated.
PLOS Neglected Tropical Diseases | 2011
Yovany Moreno; Pierre-Paul Gros; Mifong Tam; Mariela Segura; Rajesh Valanparambil; Timothy G. Geary; Mary M. Stevenson
The murine parasite Heligmosomoides polygyrus is a convenient experimental model to study immune responses and pathology associated with gastrointestinal nematode infections. The excretory-secretory products (ESP) produced by this parasite have potent immunomodulatory activity, but the protein(s) responsible has not been defined. Identification of the protein composition of ESP derived from H. polygyrus and other relevant nematode species has been hampered by the lack of genomic sequence information required for proteomic analysis based on database searches. To overcome this, a transcriptome next generation sequencing (RNA-seq) de novo assembly containing 33,641 transcripts was generated, annotated, and used to interrogate mass spectrometry (MS) data derived from 1D-SDS PAGE and LC-MS/MS analysis of ESP. Using the database generated from the 6 open reading frames deduced from the RNA-seq assembly and conventional identification programs, 209 proteins were identified in ESP including homologues of vitellogenins, retinol- and fatty acid-binding proteins, globins, and the allergen V5/Tpx-1-related family of proteins. Several potential immunomodulators, such as macrophage migration inhibitory factor, cysteine protease inhibitors, galectins, C-type lectins, peroxiredoxin, and glutathione S-transferase, were also identified. Comparative analysis of protein annotations based on the RNA-seq assembly and proteomics revealed processes and proteins that may contribute to the functional specialization of ESP, including proteins involved in signalling pathways and in nutrient transport and/or uptake. Together, these findings provide important information that will help to illuminate molecular, biochemical, and in particular immunomodulatory aspects of host-H. polygyrus biology. In addition, the methods and analyses presented here are applicable to study biochemical and molecular aspects of the host-parasite relationship in species for which sequence information is not available.
Immunology | 2002
Claudine Guilbault; Peter Stotland; Claude Lachance; Mifong Tam; Anna Keller; Luann Thompson-Snipes; Elizabeth A. Cowley; Thomas A. Hamilton; David H. Eidelman; Mary M. Stevenson; Danuta Radzioch
Cystic fibrosis females have a worse prognosis compared to male patients. Furthermore, cystic fibrosis patients infected with Pseudomonas aeruginosa have been shown to have dysregulated cytokine profiles, as higher levels of tumour necrosis factor alpha (TNF‐α), interleukin (IL)‐8, and lower levels of IL‐10 are found in the bronchoalveolar lavage fluid compared to healthy controls. The present study was aimed at investigating the importance of gender and IL‐10 in the susceptibility of C57BL/6 mice to pulmonary infection with Pseudomonas aeruginosa. We found that wildtype females were more susceptible than males to infection, as we observed greater weight loss, higher bacterial load, and inflammatory mediators in their lungs. IL‐10 knockout mice, both females and males, had higher levels of TNF‐α in the lungs compared to wildtype mice and maintained higher levels of polymorphonuclear cells and lower levels of macrophages for a longer period of time. Our results demonstrate that the number of bacteria recovered from the lungs of IL‐10 knockout male mice was significantly higher than that observed in their wildtype male counterparts and we show that neutralization of IL‐10 in infected female mice for a prolonged period of time leads to increased susceptibility to infection. Results reported in this study clearly demonstrate that females, both wildtype and IL‐10 knockout mice are more susceptible to Pseudomonas aeruginosa infection than males, and that they mount a stronger inflammatory response in the lungs.
Journal of Immunology | 2007
Karine Turcotte; Susan Gauthier; Danielle Malo; Mifong Tam; Mary M. Stevenson; Philippe Gros
The chronic myeloid leukemia syndrome of the BXH-2 mouse strain (Mus musculus) is caused by a recessive mutation (R294C) in the transcriptional regulator Icsbp1/IRF-8. In trans activation assays using an IL-12p40 gene reporter construct introduced in RAW 264.7 mouse macrophages, we show that the Icsbp1C294 isoform behaves as a partial loss-of-function. The Icsbp1C294 hypomorph allele appears to have a threshold effect on IL-12 production, with pleiotropic consequences on resistance to different types of infections in vivo. Despite the presence of a resistance Nramp1G169 allele, BXH-2 mice (Icsbp1C294) show impaired control of Mycobacterium bovis (bacille Calmette-Guérin) multiplication both early and late during infection, with uncontrolled replication linked to inability to form granulomas in infected liver and spleen. Studies in informative (BXH-2 × BALB/cJ)F2 mice show that homozygosity for Icsbp1C294 causes susceptibility to Salmonella enterica serovar Typhimurium to a level comparable to that seen for mice lacking functional Nramp1 or TLR4. Finally, impaired Icsbp1C294 function is associated with the following: 1) increased replication of the Plasmodium chabaudi AS malarial parasite during the first burst of blood parasitemia, and 2) recurring waves of high blood parasitemia late during infection. These results show that Icsbp1 is required for orchestrating early innate responses and also long-term immune protection against unrelated intracellular pathogens.