Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anoop P. Patel is active.

Publication


Featured researches published by Anoop P. Patel.


Science | 2014

Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

Anoop P. Patel; Itay Tirosh; John J. Trombetta; Alex K. Shalek; Shawn M. Gillespie; Hiroaki Wakimoto; Daniel P. Cahill; Brian V. Nahed; William T. Curry; Robert L. Martuza; David N. Louis; Orit Rozenblatt-Rosen; Mario L. Suvà; Aviv Regev; Bradley E. Bernstein

Cancer at single-cell resolution Single-cell sequencing can illuminate the genetic properties of brain cancers and reveal heterogeneity within a tumor. Patel et al. examined the genome sequence of single cells isolated from brain glioblastomas. The findings revealed shared chromosomal changes but also extensive transcription variation, including genes related to signaling, which represent potential therapeutic targets. The authors suggest that the variation in tumor cells reflects neural development and that such variation among cancer cells may prove to have clinical significance. Science, this issue p. 1396 Screening individual cancer cells within a brain tumor may help to guide treatment and predict prognosis. Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.


Neuro-oncology | 2012

Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells

Hiroaki Wakimoto; Gayatry Mohapatra; Ryuichi Kanai; William T. Curry; Stephen Yip; Mai Nitta; Anoop P. Patel; Zachary R. Barnard; Anat Stemmer-Rachamimov; David N. Louis; Robert L. Martuza; Samuel D. Rabkin

The clinicopathological heterogeneity of glioblastoma (GBM) and the various genetic and phenotypic subtypes in GBM stem cells (GSCs) are well described. However, the relationship between GSCs and the corresponding primary tumor from which they were isolated is poorly understood. We have established GSC-enriched neurosphere cultures from 15 newly diagnosed GBM specimens and examined the relationship between the histopathological and genomic features of GSC-derived orthotopic xenografts and those of the respective patient tumors. GSC-initiated xenografts recapitulate the distinctive cytological hallmarks and diverse histological variants associated with the corresponding patient GBM, including giant cell and gemistocytic GBM, and primitive neuroectodermal tumor (PNET)-like components. This indicates that GSCs generate tumors that preserve patient-specific disease phenotypes. The majority of GSC-derived intracerebral xenografts (11 of 15) demonstrated a highly invasive behavior crossing the midline, whereas the remainder formed discrete nodular and vascular masses. In some cases, GSC invasiveness correlated with preoperative MRI, but not with the status of PI3-kinase/Akt pathways or O(6)-methylguanine methyltransferase expression. Genome-wide screening by array comparative genomic hybridization and fluorescence in situ hybridization revealed that GSCs harbor unique genetic copy number aberrations. GSCs acquiring amplifications of the myc family genes represent only a minority of tumor cells within the original patient tumors. Thus, GSCs are a genetically distinct subpopulation of neoplastic cells within a GBM. These studies highlight the value of GSCs for preclinical modeling of clinically relevant, patient-specific GBM and, thus, pave the way for testing novel anti-GSC/GBM agents for personalized therapy.


Nature | 2016

Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma

Itay Tirosh; Andrew S. Venteicher; Christine Hebert; Leah E. Escalante; Anoop P. Patel; Keren Yizhak; Jonathan M. Fisher; Christopher Rodman; Christopher Mount; Mariella G. Filbin; Cyril Neftel; Niyati Desai; Jackson Nyman; Benjamin Izar; Christina C. Luo; Joshua M. Francis; Aanand A. Patel; Maristela L. Onozato; Nicolo Riggi; Kenneth J. Livak; Dave Gennert; Rahul Satija; Brian V. Nahed; William T. Curry; Robert L. Martuza; Ravindra Mylvaganam; A. John Iafrate; Matthew P. Frosch; Todd R. Golub; Miguel Rivera

Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.


Cancer Cell | 2014

EWS-FLI1 Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma

Nicolo Riggi; Birgit Knoechel; Shawn M. Gillespie; Esther Rheinbay; Gaylor Boulay; Mario L. Suvà; Nikki Rossetti; Wannaporn E. Boonseng; Ozgur Oksuz; Edward B. Cook; Aurélie Formey; Anoop P. Patel; Melissa Gymrek; Vishal Thapar; Vikram Deshpande; David T. Ting; Francis J. Hornicek; G. Petur Nielsen; Ivan Stamenkovic; Martin J. Aryee; Bradley E. Bernstein; Miguel Rivera

The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.


Science | 2017

Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq.

Andrew S. Venteicher; Itay Tirosh; Christine Hebert; Keren Yizhak; Cyril Neftel; Mariella G. Filbin; Volker Hovestadt; Leah E. Escalante; McKenzie L. Shaw; Christopher Rodman; Shawn M. Gillespie; Danielle Dionne; Christina C. Luo; Hiranmayi Ravichandran; Ravindra Mylvaganam; Christopher Mount; Maristela L. Onozato; Brian V. Nahed; Hiroaki Wakimoto; William T. Curry; A. John Iafrate; Miguel Rivera; Matthew P. Frosch; Todd R. Golub; Priscilla K. Brastianos; Gad Getz; Anoop P. Patel; Michelle Monje; Daniel P. Cahill; Orit Rozenblatt-Rosen

Single-cell RNA sequencing identifies a common origin for specific types of human glioma brain tumors. Effects of the tumor microenvironment Glioma brain tumors that carry mutant copies of the IDH gene can be subdivided into two major classes. However, the development of and differences between these two classes are not well characterized. Venteicher et al. coupled bulk sequencing and publicly available data with single-cell RNA sequencing data on glioma patient tissue samples. They identified a common lineage program that is shared between glioma subtypes. This suggests that the observed differences between the two glioma classes originate from lineage-specific genetic changes and the tumor microenvironment. Science, this issue p. eaai8478 INTRODUCTION Tumor fitness, evolution, and resistance to therapy are governed by selection of malignant cells with specific genotypes, by expression programs related to cellular phenotypes, and by influences of the tumor microenvironment (TME). Although bulk tumor analysis can interrogate the genetic state of tumor cells with high precision, bulk expression profiles average the diverse cells within each tumor, thereby masking critical differences and providing limited insight into cancer cell programs and TME influences. Single-cell RNA sequencing (scRNA-seq) can help to address those challenges but incurs financial and logistic considerations, including the time required to accrue large cohorts of fresh tumor specimen for single-cell analysis. RATIONALE We reasoned that scRNA-seq of a limited number of representative tumors could be combined with bulk data from large cohorts to decipher differences between tumor subclasses. In this approach, bulk samples collected for large cohorts, such as from The Cancer Genome Atlas (TCGA), are first used to define the combined effects of differences in cancer cell genotypes, phenotypes, and the composition of the TME. Single-cell analysis of a limited set of representative tumors is then used to distinguish those effects. We applied this approach to understand the differences between two types of isocitrate dehydrogenase (IDH)–mutant gliomas: astrocytoma (IDH-A) and oligodendroglioma (IDH-O). IDH-A and IDH-O are distinguished by co-occurring signature genetic events and by histopathology and are thought to recapitulate distinct glial lineages. By combining 9879 scRNA-seq profiles from 10 IDH-A tumors, 4347 scRNA-seq profiles from six IDH-O tumors, and 165 TCGA bulk RNA profiles, we could decipher differences between these two tumor types at single-cell resolution. RESULTS We find that differences in bulk expression profiles between IDH-A and IDH-O are primarily explained by the impact of signature genetic events and TME composition, but not by distinct expression programs of glial lineages in the malignant cells. We infer that both IDH-A and IDH-O share the same developmental hierarchy, consisting in each case of three subpopulations of malignant cells: nonproliferating cells differentiated along the astrocytic and oligodendrocytic lineages, and proliferative undifferentiated cells that resemble neural stem/progenitor cells. By analyzing tumors of different clinical grades, we observe that higher-grade tumors present enhanced proliferation, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia programs in the TME. CONCLUSION Our approach provides a general framework to decipher differences between classes of human tumors by decoupling cancer cell genotypes, phenotypes, and the composition of the TME. The shared glial lineages and developmental hierarchies observed in IDH-A and IDH-O suggest a common progenitor for all IDH-mutant gliomas, shedding light on a long-standing debate in gliomagenesis. In contrast to the similarity in glial lineages, IDH-A and IDH-O differ significantly in their TME, and in particular in the abundance of microglia/macrophage cells. Microglia and macrophages also differ between IDH-A tumors of different grades. Our study redefines the cellular composition of human IDH-mutant gliomas, with important implications for disease management. Single-cell RNA-seq of IDH-mutant gliomas reveals tumor architecture. (Top) Human samples were dissociated and analyzed by scRNA-seq. (Bottom) IDH-O and IDH-A differ in genetics and TME but are both primarily composed of three main types of malignant cells: cycling stem-like cells and noncycling astrocyte-like and oligodendrocyte-like cells. Tumor progression is associated with increased proliferation, decreased differentiation, and increase in macrophages over microglia in the TME. Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)–mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.


Cell | 2017

Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer

Sidharth V. Puram; Itay Tirosh; Anuraag Parikh; Anoop P. Patel; Keren Yizhak; Shawn M. Gillespie; Christopher Rodman; Christina L. Luo; Edmund A. Mroz; Kevin S. Emerick; Daniel G. Deschler; Mark A. Varvares; Ravi Mylvaganam; Orit Rozenblatt-Rosen; James W. Rocco; William C. Faquin; Derrick T. Lin; Aviv Regev; Bradley E. Bernstein

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.


Neurosurgery | 2012

Expression of FMS-like Tyrosine Kinase 3 Ligand by Oncolytic Herpes Simplex Virus Type I Prolongs Survival in Mice Bearing Established Syngeneic Intracranial Malignant Glioma

Zachary R. Barnard; Hiroaki Wakimoto; Cecile Zaupa; Anoop P. Patel; Jacquelyn Klehm; Robert L. Martuza; Samuel D. Rabkin; William T. Curry

BACKGROUND Glioblastoma is a fatal brain tumor in needing urgent effective therapy. Treatments with both oncolytic viruses and immunotherapy have shown preclinical efficacy and clinical promise. We sought to exploit possible synergies between oncolytic herpes simplex virus type 1 (oHSV-1) infection of intracranial gliomas and delivery of immune-stimulating fms-like tyrosine kinase 3 ligand (Flt3L) by engineering a herpes vector to express the cytokine. OBJECTIVE To construct an oHSV-1 vector that expresses high levels of Flt3L and examine its antiglioma efficacy in an immunocompetent murine model. METHODS G47Δ and a bacterial artificial chromosome system were used to generate a novel oHSV-1, termed G47Δ-Flt3L, expressing Flt3L. Cytokine expression was confirmed, and G47Δ-Flt3L was injected intratumorally into established intracranial CT-2A gliomas in syngeneic C57/Bl6 mice. Animals were followed for survival and assessed by the Kaplan-Meier method. RESULTS G47Δ-Flt3L expressed high levels of Flt3L in culture. Expression of Flt3L affected neither viral replication nor had a cytotoxic effect on CT2A glioma cells. Direct inoculation into intracerebral CT2A glioma cells resulted in high levels of detectable Flt3L in mouse blood and was superior to parental G47Δ in prolonging survival in glioma-bearing animals. CONCLUSION Treatment with G47Δ-Flt3L improves survival of glioma-bearing mice.


Journal of Neuropathology and Experimental Neurology | 2015

Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment

Fares Nigim; Jill Cavanaugh; Anoop P. Patel; William T. Curry; Shinichi Esaki; Ekkehard M. Kasper; Andrew S. Chi; David N. Louis; Robert L. Martuza; Samuel D. Rabkin; Hiroaki Wakimoto

Abstract Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1&agr; (HIF-1&agr;) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1&agr;-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1&agr; and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 &mgr;m distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1&agr; expression in cultured MGG123 cells, which was abrogated by the HIF-1&agr; inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1&agr; expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.


Journal of Clinical Neuroscience | 2013

Clinical features of brain metastasis from salivary gland tumors.

Andrew S. Venteicher; Brian P. Walcott; Sameer A. Sheth; Matija Snuderl; Anoop P. Patel; William T. Curry; Brian V. Nahed

Salivary gland tumors comprise a group of 24 tumor subtypes with a wide range of clinical behaviors and propensities for metastasis. Several prognostic factors have been identified that help predict the development of systemic metastases, most commonly to the lung, liver, or bone. Metastases to the brain are rare. To better understand the behavior of salivary gland tumors that metastasise to the brain, we performed a retrospective cohort analysis on a series of patients to highlight features of their medical and surgical management. From 2007 to 2011, a database of 4117 elective craniotomies were queried at a single institution to identify patients surgically treated for salivary gland metastases to the brain. Three patients were identified. Histologic subtypes included salivary duct carcinoma, poorly differentiated carcinoma, and papillary mucinous adenocarcinoma. They had all undergone previous treatment for their primary malignancy. The mean time to intracranial metastasis was 48 months from initial diagnosis (range, 14-91 months). Treatment for intracranial metastases included surgical resection, whole brain radiation, stereotactic radiosurgery, and chemotherapy. Intracranial metastases from salivary gland tumors are rare, present years after diagnosis of the primary tumor, and are treatable with multimodality therapy.


Journal of Clinical Neuroscience | 2014

Multiplexed protein profiling after aneurysmal subarachnoid hemorrhage: Characterization of differential expression patterns in cerebral vasospasm

Brian P. Walcott; Anoop P. Patel; Christopher J. Stapleton; Rikin A. Trivedi; Adam Young; Christopher S. Ogilvy

Cerebral vasospasm is a major contributor to delayed morbidity following aneurysmal subarachnoid hemorrhage. We sought to evaluate differential plasma protein levels across time in patients with aneurysmal subarachnoid hemorrhage to identify potential biomarkers and to better understand the pathogenesis of cerebral vasospasm. Nine female patients with aneurysmal subarachnoid hemorrhage underwent serial analysis of 239 different serum protein levels using quantitative, multiplexed immunoassays (DiscoveryMAP 250+ v2.0, Myriad RBM, Austin, TX, USA) on post-hemorrhage days 0 and 5. A repeated measures analysis of variance determined that mean protein concentration decreased significantly in patients who developed vasospasm versus those who did not for alpha-2-macroglobulin (F [1.00,7.00]=16.33, p=0.005), angiogenin (F [1.00,7.00]=7.65, p=0.028), apolipoprotein A-IV (F [1.00,7.00]=6.308, p=0.040), granulocyte colony-stimulating factor (F [1.00,7.00]=9.08, p=0.020), macrophage-stimulating protein (F [1.00,7.00]=24.21, p=0.002), tetranectin (F [1.00,7.00]=5.46, p<0.039), vascular endothelial growth factor receptor 3 (F [1.00,7.00]=6.94, p=0.034), and significantly increased for vitronectin (F [1.00,7.00]=5.79, p=0.047). These biomarkers may be of value in detecting cerebral vasospasm, possibly aiding in the identification of patients at high-risk prior to neurological deterioration.

Collaboration


Dive into the Anoop P. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge