Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anouk Schrantee is active.

Publication


Featured researches published by Anouk Schrantee.


JAMA Psychiatry | 2016

Age-Dependent Effects of Methylphenidate on the Human Dopaminergic System in Young vs Adult Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial

Anouk Schrantee; Hyke G. H. Tamminga; Cheima Bouziane; Marco A. Bottelier; Esther E. Bron; Henk-Jan M. M. Mutsaerts; Aeilko H. Zwinderman; Inge Rasmus Groote; Serge A.R.B. Rombouts; Ramón J. L. Lindauer; Stefan Klein; Wiro J. Niessen; Brent C. Opmeer; Frits Boer; Paul J. Lucassen; Susan L. Andersen; Hilde M. Geurts; Liesbeth Reneman

IMPORTANCE Although numerous children receive methylphenidate hydrochloride for the treatment of attention-deficit/hyperactivity disorder (ADHD), little is known about age-dependent and possibly lasting effects of methylphenidate on the human dopaminergic system. OBJECTIVES To determine whether the effects of methylphenidate on the dopaminergic system are modified by age and to test the hypothesis that methylphenidate treatment of young but not adult patients with ADHD induces lasting effects on the cerebral blood flow response to dopamine challenge, a noninvasive probe for dopamine function. DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial (Effects of Psychotropic Drugs on Developing Brain-Methylphenidate) among ADHD referral centers in the greater Amsterdam area in the Netherlands between June 1, 2011, and June 15, 2015. Additional inclusion criteria were male sex, age 10 to 12 years or 23 to 40 years, and stimulant treatment-naive status. INTERVENTIONS Treatment with either methylphenidate or a matched placebo for 16 weeks. MAIN OUTCOMES AND MEASURES Change in the cerebral blood flow response to an acute challenge with methylphenidate, noninvasively assessed using pharmacological magnetic resonance imaging, between baseline and 1 week after treatment. Data were analyzed using intent-to-treat analyses. RESULTS Among 131 individuals screened for eligibility, 99 patients met DSM-IV criteria for ADHD, and 50 participants were randomized to receive methylphenidate and 49 to placebo. Sixteen weeks of methylphenidate treatment increased the cerebral blood flow response to methylphenidate within the thalamus (mean difference, 6.5; 95% CI, 0.4-12.6; P = .04) of children aged 10 to 12 years old but not in adults or in the placebo group. In the striatum, the methylphenidate condition differed significantly from placebo in children but not in adults (mean difference, 7.7; 95% CI, 0.7-14.8; P = .03). CONCLUSIONS AND RELEVANCE We confirm preclinical data and demonstrate age-dependent effects of methylphenidate treatment on human extracellular dopamine striatal-thalamic circuitry. Given its societal relevance, these data warrant replication in larger groups with longer follow-up. TRIAL REGISTRATION identifier: NL34509.000.10 and trialregister.nl identifier: NTR3103.


Brain Imaging and Behavior | 2016

Effects of dexamphetamine-induced dopamine release on resting-state network connectivity in recreational amphetamine users and healthy controls

Anouk Schrantee; Bart Ferguson; Diederick Stoffers; Jan Booij; Serge A.R.B. Rombouts; Liesbeth Reneman

Dexamphetamine (dAMPH) is not only used for the treatment of attention deficit hyperactivity disorder (ADHD), but also as a recreational drug. Acutely, dAMPH induces release of predominantly dopamine (DA) in the striatum, and in the cortex both DA and noradrenaline. Recent animal studies have shown that chronic dAMPH administration can induce changes in the DA system following long-term exposure, as evidenced by reductions in DA transporters, D2/3 receptors and endogenous DA levels. However, only a limited number of studies have investigated the effects of dAMPH in the human brain. We used a combination of resting-state functional magnetic resonance imaging (rs-fMRI) and [123I]IBZM single-photon emission computed tomography (SPECT) (to assess baseline D2/3 receptor binding and DA release) in 15 recreational AMPH users and 20 matched healthy controls to investigate the short-, and long-term effects of AMPH before and after an acute intravenous challenge with dAMPH. We found that acute dAMPH administration reduced functional connectivity in the cortico-striatal-thalamic network. dAMPH-induced DA release, but not DA D2/3 receptor binding, was positively associated with connectivity changes in this network. In addition, acute dAMPH reduced connectivity in default mode networks and salience-executive-networks networks in both groups. In contrast to our hypothesis, no significant group differences were found in any of the rs-fMRI networks investigated, possibly due to lack of sensitivity or compensatory mechanisms. Our findings thus support the use of ICA-based resting-state functional connectivity as a tool to investigate acute, but not chronic, alterations induced by dAMPH on dopaminergic processing in the striatum.


Neuropsychopharmacology | 2015

Dopaminergic System Dysfunction in Recreational Dexamphetamine Users

Anouk Schrantee; Lena Václavů; Dennis F. R. Heijtel; Matthan W. A. Caan; Willy Gsell; Paul J. Lucassen; Aart J. Nederveen; Jan Booij; Liesbeth Reneman

Dexamphetamine (dAMPH) is a stimulant drug that is widely used recreationally as well as for the treatment of attention-deficit hyperactivity disorder (ADHD). Although animal studies have shown neurotoxic effects of dAMPH on the dopaminergic system, little is known about such effects on the human brain. Here, we studied the dopaminergic system at multiple physiological levels in recreational dAMPH users and age, gender, and IQ-matched dAMPH-naïve healthy controls. We assessed baseline D2/3 receptor availability, in addition to changes in dopamine (DA) release using single-photon emission computed tomography and DA functionality using pharmacological magnetic resonance imaging, following a dAMPH challenge. Also, the subjective responses to the challenge were determined. dAMPH users displayed significantly lower striatal DA D2/3 receptor binding compared with healthy controls. In dAMPH users, we further observed a blunted DA release and DA functionality to an acute dAMPH challenge, as well as a blunted subjective response. Finally, the lower D2/3 availability, the more pleasant the dAMPH administration was experienced by control subjects, but not by dAMPH users. Thus, in agreement with preclinical studies, we show that the recreational use of dAMPH in human subjects is associated with dopaminergic system dysfunction. These findings warrant further (longitudinal) investigations and call for caution when using this drug recreationally and for ADHD.


Journal of Visualized Experiments | 2012

The use of pharmacological-challenge fMRI in pre-clinical research: application to the 5-HT system.

Anne Klomp; Jordi L. Tremoleda; Anouk Schrantee; Willy Gsell; Liesbeth Reneman

Pharmacological MRI (phMRI) is a new and promising method to study the effects of substances on brain function that can ultimately be used to unravel underlying neurobiological mechanisms behind drug action and neurotransmitter-related disorders, such as depression and ADHD. Like most of the imaging methods (PET, SPECT, CT) it represents a progress in the investigation of brain disorders and the related function of neurotransmitter pathways in a non-invasive way with respect of the overall neuronal connectivity. Moreover it also provides the ideal tool for translation to clinical investigations. MRI, while still behind in molecular imaging strategies compared to PET and SPECT, has the great advantage to have a high spatial resolution and no need for the injection of a contrast-agent or radio-labeled molecules, thereby avoiding the repetitive exposure to ionizing radiations. Functional MRI (fMRI) is extensively used in research and clinical setting, where it is generally combined with a psycho-motor task. phMRI is an adaptation of fMRI enabling the investigation of a specific neurotransmitter system, such as serotonin (5-HT), under physiological or pathological conditions following activation via administration of a specific challenging drug. The aim of the method described here is to assess brain 5-HT function in free-breathing animals. By challenging the 5-HT system while simultaneously acquiring functional MR images over time, the response of the brain to this challenge can be visualized. Several studies in animals have already demonstrated that drug-induced increases in extracellular levels of e.g. 5-HT (releasing agents, selective re-uptake blockers, etc) evoke region-specific changes in blood oxygenation level dependent (BOLD) MRI signals (signal due to a change of the oxygenated/deoxygenated hemoglobin levels occurring during brain activation through an increase of the blood supply to supply the oxygen and glucose to the demanding neurons) providing an index of neurotransmitter function. It has also been shown that these effects can be reversed by treatments that decrease 5-HT availability16,13,18,7. In adult rats, BOLD signal changes following acute SSRI administration have been described in several 5-HT related brain regions, i.e. cortical areas, hippocampus, hypothalamus and thalamus9,16,15. Stimulation of the 5-HT system and its response to this challenge can be thus used as a measure of its function in both animals and humans2,11.


The FASEB Journal | 2017

Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding

Ruth I. Versteeg; Anouk Schrantee; Sofie M. Adriaanse; Unga A. Unmehopa; Jan Booij; Liesbeth Reneman; Eric Fliers; Susanne E. la Fleur; Mireille J. Serlie

Recent studies have shown that meal timing throughout the day contributes to maintaining or regaining weight after hypocaloric diets. Although brain serotonin and dopamine are well known to be involved in regulating feeding, it is unknown whether meal timing during energy restriction affects these neurotransmitter systems. We studied the effect of a 4 wk hypocaloric diet with either 50% of daily calories consumed at breakfast (BF group) or at dinner (D group) on hypothalamic and thalamic serotonin transporter (SERT) binding and on striatal dopamine transporter (DAT) binding. The BF and D groups lost a similar amount of weight. Striatal DAT and thalamic SERT binding increased in the BF group, while decreasing in the D group after the diet (ΔDAT 0.37 ± 0.63 vs. −0.53 ± 0.77, respectively; P = 0.005; ΔSERT 0.12 ± 0.25 vs. −0.13 ± 0.26 respectively, P = 0.032). Additional voxel‐based analysis showed an increase in DAT binding in the ventral striatum in the BF group and a decrease in the dorsal striatum in the D group. During weight loss, striatal DAT and thalamic SERT binding increased weight independently when 50% of daily calories were consumed at breakfast, whereas it decreased when caloric intake was highest at dinner. These findings may contribute to the earlier reported favorable effect of meal timing on weight maintenance after hypocaloric diets.—Versteeg, R. I., Schrantee, A., Adriaanse, S. M., Unmehopa, U. A., Booij, J., Reneman, L., Fliers, E., la Fleur, S. E., Serlie, M. J. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding. FASEB J. 31, 4545–4554 (2017). www.fasebj.org


NeuroImage: Clinical | 2018

ADHD and maturation of brain white matter: A DTI study in medication naive children and adults

Cheima Bouziane; Matthan W. A. Caan; Hyke G. H. Tamminga; Anouk Schrantee; Marco A. Bottelier; Michiel B. de Ruiter; Sandra J.J. Kooij; Liesbeth Reneman

Several diffusion tensor imaging (DTI) studies in attention deficit hyperactivity disorder (ADHD) have shown a delay in brain white matter (WM) development. Because these studies were mainly conducted in children and adolescents, these WM abnormalities have been assumed, but not proven to progress into adulthood. To provide further insight in the natural history of WM maturation delay in ADHD, we here investigated the modulating effect of age on WM in children and adults. 120 stimulant-treatment naive male ADHD children (10–12 years of age) and adults (23–40 years of age) with ADHD (according to DSM-IV; all subtypes) were included, along with 23 age and gender matched controls. Fractional anisotropy (FA) values were compared throughout the WM by means of tract-based spatial statistics (TBSS) and in specific regions of interest (ROIs). On both TBSS and ROI analyses, we found that stimulant-treatment naive ADHD children did not differ in FA values from control children, whereas adult ADHD subjects had reduced FA values when compared to adult controls in several regions. Significant age × group interactions for whole brain FA (p = 0.015), as well as the anterior thalamic radiation (p = 0.015) suggest that ADHD affects the brain WM age-dependently. In contrast to prior studies conducted in medicated ADHD children, we did not find WM alterations in stimulant treatment naïve children, only treatment-naïve adults. Thus, our findings suggest that the reported developmental delay in WM might appear after childhood, and that previously reported differences between ADHD children and normal developing peers could have been attributed to prior ADHD medications, and/or other factors that affect WM development, such as age and gender.


Psychiatry Research-neuroimaging | 2017

Age-dependent effects of acute methylphenidate on amygdala reactivity in stimulant treatment-naive patients with Attention Deficit/Hyperactivity Disorder

Marco A. Bottelier; Anouk Schrantee; Bart Ferguson; Hyke G. H. Tamminga; Cheima Bouziane; J.J. Sandra Kooij; Michiel B. de Ruiter; Liesbeth Reneman

In the present study, we investigate whether methylphenidate (MPH) affects emotional processing and whether this effect is modulated by age. We measured amygdala reactivity with functional Magnetic Resonance Imaging (fMRI) during processing of angry and fearful facial expressions in male stimulant treatment-naive patients with ADHD (N = 35 boys; N = 46 men) and 23 healthy control subjects (N = 11 boys; N = 12 men). In ADHD patients, we also measured amygdala reactivity 90min after an acute oral challenge with MPH (0.5mg/kg). Mean amygdala reactivity was analyzed for all subjects using a repeated measures analysis of variance (ANOVA). Whole-brain maps were analyzed for the patients only. At baseline, we found a age*diagnosis effect approaching significance (p = 0.05) in the right amygdala due to lower reactivity in children with Attention Deficit/Hyperactivity Disorder (ADHD) vs. controls (-31%), but higher reactivity in adults with ADHD vs. controls (+31%). MPH significantly reduced right amygdala reactivity in all patients, resulting in further reductions in children. In the left amygdala, reduction of amygdala reactivity was confined to adult ADHD patients whereas there was no change in children with ADHD. MPH-induced decrease of amygdala reactivity in adults might be a promising avenue for managing emotional dysregulation when replicated for chronic MPH treatment.


PLOS ONE | 2017

Repeated dexamphetamine treatment alters the dopaminergic system and increases the phMRI response to methylphenidate

Anouk Schrantee; Jordi L. Tremoleda; Marzena Wylezinska-Arridge; Valentine Bouet; Peter Hesseling; Gideon F. Meerhoff; Kora de Bruin; Jan Koeleman; Thomas Freret; Michel Boulouard; Emilie Desfosses; Laurent Galineau; Alessandro Gozzi; François Dauphin; Willy Gsell; Jan Booij; Paul J. Lucassen; Liesbeth Reneman

Dexamphetamine (AMPH) is a psychostimulant drug that is used both recreationally and as medication for attention deficit hyperactivity disorder. Preclinical studies have demonstrated that repeated exposure to AMPH can induce damage to nerve terminals of dopamine (DA) neurons. We here assessed the underlying neurobiological changes in the DA system following repeated AMPH exposure and pre-treated rats with AMPH or saline (4 times 5 mg/kg s.c., 2 hours apart), followed by a 1-week washout period. We then used pharmacological MRI (phMRI) with a methylphenidate (MPH) challenge, as a sensitive and non-invasive in-vivo measure of DAergic function. We subsequently validated the DA-ergic changes post-mortem, using a.o. high-performance liquid chromatography (HPLC) and autoradiography. In the AMPH pre-treated group, we observed a significantly larger BOLD response to the MPH challenge, particularly in DA-ergic brain areas and their downstream projections. Subsequent autoradiography studies showed that AMPH pre-treatment significantly reduced DA transporter (DAT) density in the caudate-putamen (CPu) and nucleus accumbens, whereas HPLC analysis revealed increases in the DA metabolite homovanillic acid in the CPu. Our results suggest that AMPH pre-treatment alters DAergic responsivity, a change that can be detected with phMRI in rats. These phMRI changes likely reflect increased DA release together with reduced DAT binding. The ability to assess subtle synaptic changes using phMRI is promising for both preclinical studies of drug discovery, and for clinical studies where phMRI can be a useful tool to non-invasively investigate DA abnormalities, e.g. in neuropsychiatric disorders.


NeuroImage: Clinical | 2017

Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients

Michelle M. Solleveld; Anouk Schrantee; Nicolaas A.J. Puts; Liesbeth Reneman; Paul J. Lucassen

Stimulants are the main pharmacological treatment for patients with attention-deficit/hyperactivity disorder (ADHD). Their current prescription rates are rising, both in children, adolescents and adults. Related to the impulse control phenotype, both preclinical and clinical studies have demonstrated lower γ-amino butyric acid (GABA) levels in prefrontal brain regions in ADHD. Whereas stimulant treatment increases GABA levels, preclinical studies have suggested that stimulant treatment effects may be age-dependent. As the long-term consequences of stimulant use in ADHD children and adolescents have so far been poorly studied, we used magnetic resonance spectroscopy to assess GABA+ and glutamate + glutamine (Glx) levels in the medial prefrontal cortex (mPFC) of adult ADHD patients, both before and after an oral methylphenidate (MPH) challenge. Three groups were studied: 1) ADHD patients who were first treated with stimulants before 16 years of age, i.e. during periods of ongoing brain development (early-stimulant-treated, EST); 2) patients first treated with stimulants in adulthood (i.e. > 23 years) (late-stimulant-treated, LST), and 3) stimulant-treatment-naive (STN) ADHD patients. Reduced basal GABA+ levels were found in EST compared to LST patients (p = 0.04), while after an MPH challenge, only the EST patients showed significant increases in GABA+ (p = 0.01). For Glx, no differences were found at baseline, nor after an MPH challenge. First stimulant exposure at a young age is thus associated with lower baseline levels of GABA+ and increased responsivity in adulthood. This effect could not be found in patients that started treatment at an adult age. Hence, while adult stimulant treatment seems to exert no major effects on GABA+ levels in the mPFC, MPH may induce long-lasting alterations in the adult mPFC GABAergic system when treatment was started at a young age.


NeuroImage: Clinical | 2017

The age-dependent effects of a single-dose methylphenidate challenge on cerebral perfusion in patients with attention-deficit/hyperactivity disorder

Anouk Schrantee; Hjmm Mutsaerts; Cheima Bouziane; Hgh Tamminga; Ma Bottelier; Liesbeth Reneman

Methylphenidate (MPH) is a stimulant drug and an effective treatment for attention-deficit/hyperactivity disorder (ADHD) in both children and adults. Pre-clinical studies suggest that the response to stimulants is dependent on age, which may reflect the ontogeny of the dopamine (DA) system, which continues to develop throughout childhood and adolescence. Therefore, the aim of this study was to investigate the modulating effect of age on the cerebral blood flow (CBF) response to MPH in stimulant treatment-naive children and adults with ADHD. Ninety-eight stimulant treatment-naive male pediatric (10–12 years) and adult (23–40 years) patients with ADHD were included in this study. The CBF response to an acute challenge with MPH (0.5 mg/kg) was measured using arterial spin labeling (ASL) pharmacological magnetic resonance imaging, as a proxy for DA function. Region-of-interest (ROI) analyses were carried out for the striatum, thalamus and medial prefrontal cortex and in addition voxel-wise analyses were conducted. An acute challenge with MPH decreased CBF in both children and adults in cortical areas, although to a greater extent in adults. In contrast, ROI analyses showed that MPH decreased thalamic CBF only in children, but not adults. Our findings highlight the importance of taking the developmental perspective into account when studying the effects of stimulants in ADHD patients.

Collaboration


Dive into the Anouk Schrantee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Booij

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michiel B. de Ruiter

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge