Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anshika Kapur is active.

Publication


Featured researches published by Anshika Kapur.


Journal of the American Chemical Society | 2015

PHOTOLIGATION OF AN AMPHIPHILIC POLYMER WITH MIXED COORDINATION PROVIDES COMPACT AND REACTIVE QUANTUM DOTS

Wentao Wang; Anshika Kapur; Xin Ji; Malak Safi; Goutam Palui; Valle Palomo; Philip E. Dawson; Hedi Mattoussi

We introduce a new set of multicoordinating polymers as ligands that combine two distinct metal-chelating groups, lipoic acid and imidazole, for the surface functionalization of QDs. These ligands combine the benefits of thiol and imidazole coordination to reduce issues of thiol oxidation and weak binding affinity of imidazole. The ligand design relies on the introduction of controllable numbers of lipoic acid and histamine anchors, along with hydrophilic moieties and reactive functionalities, onto a poly(isobutylene-alt-maleic anhydride) chain via a one-step nucleophilic addition reaction. We further demonstrate that this design is fully compatible with a novel and mild photoligation strategy to promote the in situ ligand exchange and phase transfer of hydrophobic QDs to aqueous media under borohydride-free conditions. Ligation with these polymers provides highly fluorescent QDs that exhibit great long-term colloidal stability over a wide range of conditions, including a broad pH range (3-13), storage at nanomolar concentration, under ambient conditions, in 100% growth media, and in the presence of competing agents with strong reducing property. We further show that incorporating reactive groups in the ligands permits covalent conjugation of fluorescent dye and redox-active dopamine to the QDs, producing fluorescent platforms where emission is controlled/tuned by Förster Resonance Energy Transfer (FRET) or pH-dependent charge transfer (CT) interactions. Finally, the polymer-coated QDs have been coupled to cell-penetrating peptides to facilitate intracellular uptake, while subsequent cytotoxicity tests show no apparent decrease in cell viability.


Journal of the American Chemical Society | 2015

A Multifunctional Polymer Combining the Imidazole and Zwitterion Motifs as a Biocompatible Compact Coating for Quantum Dots

Wentao Wang; Xin Ji; Anshika Kapur; Chengqi Zhang; Hedi Mattoussi

We introduce a set of multicoordinating imidazole- and zwitterion-based ligands suited for surface functionalization of quantum dots (QDs). The polymeric ligands are built using a one-step nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) and distinct amine-containing functionalities. This has allowed us to introduce several imidazole anchoring groups along the polymer chain for tight coordination to the QD surface and a controllable number of zwitterion moieties for water solubilization. It has also permitted the introduction of reactive and biomolecular groups for further conjugation and targeting. The QDs capped with these new ligands exhibit excellent long-term colloidal stability over a broad range of pH, toward excess electrolyte, in cell-growth media, and in the presence of natural reducing agents such as glutathione. These QDs are also resistant to the oxidizing agent H2O2. More importantly, by the use of zwitterion moieties as the hydrophilic block, this polymer design provides QDs with a thin coating and compact overall dimensions. These QDs are easily self-assembled with full size proteins expressed with a polyhistidine tag via metal-histidine coordination. Additionally, the incorporation of amine groups allows covalent coupling of the QDs to the neurotransmitter dopamine. This yields redox-active QD platforms that can be used to track pH changes and detect Fe ions and cysteine through charge-transfer interactions. Finally, we found that QDs cap-exchanged with folic acid-functionalized ligands could effectively target cancer cells, where folate-receptor-mediated endocytosis of QDs into living cells was time- and concentration-dependent.


Journal of the American Chemical Society | 2015

Controlling the Architecture, Coordination, and Reactivity of Nanoparticle Coating Utilizing an Amino Acid Central Scaffold

Naiqian Zhan; Goutam Palui; Anshika Kapur; Valle Palomo; Philip E. Dawson; Hedi Mattoussi

We have developed a versatile strategy to prepare a series of multicoordinating and multifunctional ligands optimized for the surface-functionalization of luminescent quantum dots (QDs) and gold nanoparticles (AuNPs) alike. Our chemical design relies on the modification of l-aspartic acid precursor to controllably combine, through simple peptide coupling chemistry, one or two lipoic acid (LA) groups and poly(ethylene glycol) (PEG) moieties in the same ligand. This route has provided two sets of modular ligands: (i) bis(LA)-PEG, which presents two lipoic acids (higher coordination) appended onto a single end-functionalized PEG, and (ii) LA-(PEG)2 made of two PEG moieties (higher branching, with various end reactive groups) appended onto a single lipoic acid. These ligands are combined with a new photoligation strategy to yield hydrophilic and reactive QDs that are colloidally stable over a broad range of conditions, including storage at nanomolar concentration and under ambient conditions. AuNPs capped with these ligands exhibit excellent stability in various biological conditions and improved resistance against NaCN digestion. This route also provides compact nanocrystals with tunable surface reactivity. As such, we have covalently coupled QDs capped with bis(LA)-PEG-COOH to transferrin to facilitate intracellular uptake. We have also characterized and quantified the coupling of dye-labeled peptides to QD surfaces using fluorescence resonance energy transfer interactions in QD-peptide-dye assemblies.


Bioconjugate Chemistry | 2016

Multifunctional and High Affinity Polymer Ligand that Provides Bio-Orthogonal Coating of Quantum Dots

Wentao Wang; Anshika Kapur; Xin Ji; Birong Zeng; Dinesh Mishra; Hedi Mattoussi

We detail the design of hydrophilic metal-coordinating ligands and their use for the effective coating of luminescent quantum dots (QDs). The ligand design exploits the specific, reagent-free nucleophilic addition reaction of amine-modified molecules toward maleic anhydride to introduce several lipoic acid metal anchors, hydrophilic zwitterion moieties, and specific reactive groups along a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. Tunable reactive groups tested in this study include azide, biotin, carboxyl, and amine. Cap exchange with these multilipoic acid ligands via a photochemical ligation strategy yields homogeneous QD dispersions that are colloidally stable over several biologically relevant conditions and for extended periods of time. The zwitterionic coating yields compact nanoparticle size and imparts nonsticky surface properties onto the QDs, preventing protein absorption. The introduction of a controllable number of reactive groups allows conjugation of the QDs to biomolecules via bio-orthogonal coupling chemistries including (1) attachment of the neurotransmitter dopamine to QDs via amine-isothiocyanate reaction to produce a platform capable of probing interactions with cysteine in proteins, based on charge transfer interactions; (2) self-assembly of biotinylated QDs with streptavidin-dye; and (3) ligation of azide-functionalized QDs to cyclooctyne-modified transferrin via copper-free click chemistry, used for intracellular delivery. This ligand design strategy can be used to prepare an array of metal-coordinating ligands adapted for coating other inorganic nanoparticles, including magnetic and plasmonic nanomaterials.


Bioconjugate Chemistry | 2017

Intracellular Delivery of Luminescent Quantum Dots Mediated by a Virus-Derived Lytic Peptide

Malak Safi; Tatiana Domitrovic; Anshika Kapur; Naiqian Zhan; Fadi Aldeek; John E. Johnson; Hedi Mattoussi

We describe a new quantum dot (QD)-conjugate prepared with a lytic peptide, derived from a nonenveloped virus capsid protein, capable of bypassing the endocytotic pathways and delivering large amounts of QDs to living cells. The polypeptide, derived from the Nudaurelia capensis Omega virus, was fused onto the C-terminus of maltose binding protein that contained a hexa-HIS tag at its N-terminus, allowing spontaneous self-assembly of controlled numbers of the fusion protein per QD via metal-HIS interactions. We found that the efficacy of uptake by several mammalian cell lines was substantial even for small concentrations (10-100 nM). Upon internalization the QDs were primarily distributed outside the endosomes/lysosomes. Moreover, when cells were incubated with the conjugates at 4 °C, or in the presence of chemical endocytic inhibitors, significant intracellular uptake continued to occur. These findings indicate an entry mechanism that does not involve endocytosis, but rather the perforation of the cell membrane by the lytic peptide on the QD surfaces.


Bioconjugate Chemistry | 2017

Self-Assembled Gold Nanoparticle–Fluorescent Protein Conjugates as Platforms for Sensing Thiolate Compounds via Modulation of Energy Transfer Quenching

Anshika Kapur; Fadi Aldeek; Xin Ji; Malak Safi; Wentao Wang; Ada Del Cid; Oliver Steinbock; Hedi Mattoussi

The ability of Au and other metal nanostructures to strongly quench the fluorescence of proximal fluorophores (dyes and fluorescent proteins) has made AuNP conjugates attractive for use as platforms for sensor development based on energy transfer interactions. In this study, we first characterize the energy transfer quenching of mCherry fluorescent proteins immobilized on AuNPs via metal-histidine coordination, where parameters such as NP size and number of attached proteins are varied. Using steady-state and time-resolved fluorescence measurements, we recorded very high mCherry quenching, with efficiency reaching ∼95-97%, independent of the NP size or number of bound fluorophores (i.e., conjugate valence). We further exploited these findings to develop a solution phase sensing platform targeting thiolate compounds. Energy transfer (ET) was employed as a transduction mechanism to monitor the competitive displacement of mCherry from the Au surface upon the introduction of varying amounts of thiolates with different size and coordination numbers. Our results show that the competitive displacement of mCherry depends on the thiolate concentration, time of reaction, and type of thiol derivatives used. Further analysis of the PL recovery data provides a measure for the equilibrium dissociation constant (Kd-1) for these compounds. These findings combined indicate that the AuNP-fluorescent protein conjugates may offer a potentially useful platform for thiol sensing both in solution and in cell cultures.


Journal of Neurochemistry | 2017

Margatoxin‐bound quantum dots as a novel inhibitor of the voltage‐gated ion channel Kv1.3

Austin B. Schwartz; Anshika Kapur; Wentao Wang; Zhenbo Huang; Erminia Fardone; Goutam Palui; Hedi Mattoussi; Debra Ann Fadool

Venom‐derived ion channel inhibitors have strong channel selectivity, potency, and stability; however, tracking delivery to their target can be challenging. Herein, we utilized luminescent quantum dots (QDs) conjugated to margatoxin (MgTx) as a traceable vehicle to target a voltage‐dependent potassium channel, Kv1.3, which has a select distribution and well‐characterized role in immunity, glucose metabolism, and sensory ability. We screened both unconjugated (MgTx) and conjugated MgTx (QD‐MgTx) for their ability to inhibit Shaker channels Kv1.1 to Kv1.7 using patch‐clamp electrophysiology in HEK293 cells. Our data indicate that MgTx inhibits 79% of the outward current in Kv1.3‐transfected cells and that the QD‐MgTx conjugate is able to achieve a similar level of block, albeit a slightly reduced efficacy (66%) and at a slower time course (50% block by 10.9 ± 1.1 min, MgTx; vs. 15.3 ± 1.2 min, QD‐MgTx). Like the unbound peptide, the QD‐MgTx conjugate inhibits both Kv1.3 and Kv1.2 at a 1 nM concentration, whereas it does not inhibit other screened Shaker channels. We tested the ability of QD‐MgTx to inhibit native Kv1.3 expressed in the mouse olfactory bulb (OB). In brain slices of the OB, the conjugate acted similarly to MgTx to inhibit Kv1.3, causing an increased action potential firing frequency attributed to decreased intraburst duration rather than interspike interval. Our data demonstrate a retention of known biophysical properties associated with block of the vestibule of Kv1.3 by QD‐MgTx conjugate compared to that of MgTx, inferring QDs could provide a useful tool to deliver ion channel inhibitors to targeted tissues in vivo.


Proceedings of SPIE | 2016

Design of a multi-coordinating polymer as a platform for functionalizing metal, metal oxide and semiconductor nanocrystals

Wentao Wang; Xin Ji; Anshika Kapur; Hedi Mattoussi

We introduce a new set of amphiphilic polymers as multifunctional, metal-coordinating ligands adapted to surfacefunctionalize quantum dots (QDs), iron oxide nanoparticles (IONPs) and gold nanoparticles/nanorods (AuNPs/AuNRs). The ligand design relies on the introduction of several anchoring groups, hydrophilic moieties and reactive functionalities into a polymer chain, via one-step nucleophilic addition reaction. Such synthetic scheme also allows the insertion of target biomolecules during the ligand synthesis. This functionalization strategy yields nanocrystals that exhibit long-term colloidal stability over a broad range of biological conditions, such as pH changes and when mixed with growth media. When zwitterion groups are used as hydrophilic motifs, this provides compact nanocrystals that are compatible with conjugation to proteins via metal-polyhistidine self-assembly. In addition, we show that QDs ligated with these polymers can engage in energy or charge transfer interactions. Furthermore, nanocrystals coated with folic acid-modified polymers could promote the delivery of nanoparticle-conjugates into cancer cells via folate receptormediated endocytosis.


Colloidal Nanoparticles for Biomedical Applications XIII | 2018

Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials

Joel P. Schneider; Hedi Mattoussi; Anshika Kapur; Wentao Wang; Juan Diaz Hernandez; Scott H. Medina

The unique photophysical properties of gold nanomaterials combined with progress in developing effective surfacefunctionalization strategies has motivated researchers to employ them as tools for use in biomedical imaging, biosensing, diagnostics, photothermal therapy, and as drug and gene delivery vehicles. However, a major challenge limiting these advancements has been the unavailability of effective strategies to deliver these and other nanocrystals into the cytoplasm of live cells. In this study, we demonstrate that the use of a chemically-synthesized anti-microbial peptide, SVS-1, can promote non-endocytic uptake of both small size gold nanoparticles (AuNPs) and larger size gold nanorods (AuNRs) into mammalian cells. For this, colloidally stable AuNP and AuNRs, surface ligated with an amine-functionalized polymer, His-PIMA-PEG-OCH3/NH2 were prepared. The amine groups allow dual, covalent attachment of cysteine terminated SVS-1 (via a thioether linkage) and NHS-ester-Texas-Red dye onto the nanocrystal surfaces. We use fluorescence microscopy to demonstrate nanocrystal staining throughout the cytoplasmic volume of the cells incubated with these conjugates. More importantly, we have conducted additional endocytosis inhibition experiments where cells were incubated with the conjugates at 4°C. Here too, the imaging data have shown significant levels of nanocrystal uptake, further verifying that physical translocation of these conjugates takes place through the cell membrane independent of endocytosis. These findings are promising and can provide critical support for the widespread applications of nanomaterials in the field of biology.


ACS Omega | 2018

Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide

Anshika Kapur; Scott Medina; Wentao Wang; Goutam Palui; Joel P. Schneider; Hedi Mattoussi

We report on the ability of a chemically synthesized anticancer peptide, SVS-1, to promote the rapid uptake of gold nanorods (AuNRs) and gold nanoparticles (AuNPs) by live HeLa cells. For this, AuNPs and AuNRs, surface ligated with a multicoordinating polymer that presents several amine groups per ligand, are simultaneously reacted with SVS-1 and Texas-Red dye; the latter allows fluorescence visualization of the nanocrystals. Using epifluorescence microscopy, we find that incubation of the SVS-1-conjugated AuNPs and AuNRs with a model cancer cell line yields extended staining throughout the cell cytoplasm, even at low conjugate concentrations (∼0.1 nM). Furthermore, uptake is specific to the SVS-1-conjugated nanocrystals. Additional endocytosis inhibition experiments, where cells have been incubated with the conjugates at 4 °C or in the presence of endocytic inhibitors, show that significant levels of conjugate uptake persist. These results combined indicate an uptake mechanism that does not necessarily rely on endocytosis, a promising finding with implications for the use of nanomaterials in the field of biology and nanomedicine.

Collaboration


Dive into the Anshika Kapur's collaboration.

Top Co-Authors

Avatar

Hedi Mattoussi

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Wentao Wang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Goutam Palui

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Xin Ji

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Joel P. Schneider

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fadi Aldeek

Florida State University

View shared research outputs
Top Co-Authors

Avatar

John E. Johnson

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge