Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Goutam Palui is active.

Publication


Featured researches published by Goutam Palui.


Advanced Drug Delivery Reviews | 2012

Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes

Hedi Mattoussi; Goutam Palui; Hyon Bin Na

In this report we review some of the recent progress made for enhancing the biocompatibility of luminescent quantum dots (QDs) and for developing targeted bio-inspired applications centered on live cell imaging and sensing. We start with a detailed analysis of the surface functionalization strategies developed thus far, and discuss their effectiveness for providing long term stability of the quantum dots in biological media, to changes in pH and to added electrolytes. We then discuss the available conjugation techniques to couple QDs to a variety of biological receptors and compare their effectiveness. In particular, we highlight the implementation of new strategies such as the use of copper-free cyclo-addition reaction (CLICK) chemistry and chemo-selective ligation. We then discuss the advances made for intracellular delivery where ideas such as receptor-driven endocytosis and uptake promoted by cell penetrating peptides are used. We then describe a few representative examples where QDs have been used to investigate specific cell biology processes. Such processes include binding of QDs conjugated to the nerve growth factor to membrane specific receptors and intracellular uptake, tracking of membrane protein at the single molecule level, and recognition of ligand bound QDs by T cell receptors. We conclude by discussing issues of toxicity associated with the use of QDs in biology.


ACS Nano | 2013

Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

Fadi Aldeek; Malak Safi; Naiqian Zhan; Goutam Palui; Hedi Mattoussi

Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.


Journal of the American Chemical Society | 2012

On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine

Xin Ji; Goutam Palui; Tommaso Avellini; Hyon Bin Na; Chongyue Yi; Kenneth L. Knappenberger; Hedi Mattoussi

We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from acidic to alkaline.


ACS Nano | 2013

Growth of highly fluorescent polyethylene glycol- and zwitterion-functionalized gold nanoclusters.

Fadi Aldeek; M. A. Habeeb Muhammed; Goutam Palui; Naiqian Zhan; Hedi Mattoussi

We have prepared and characterized a new set of highly fluorescent gold nanoclusters (AuNCs) using one-step aqueous reduction of a gold precursor in the presence of bidentate ligands made of lipoic acid anchoring groups, appended with either a poly(ethylene glycol) short chain or a zwitterion group. The AuNCs fluoresce in the red to near-infrared region of the optical spectrum with emission centered at ∼750 nm and a quantum yield of ∼10-14%, and they exhibit long fluorescence lifetimes (up to ∼300 ns). Dispersions of these AuNCs exhibit great long-term colloidal stability, over a wide range of pHs (2-13) and in the presence of high electrolyte concentrations, and a strong resistance to reducing agents such as glutathione. The growth strategy further permitted the controlled, in situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), making these nanoclusters compatible with common and simple-to-implement coupling strategies, such as carbodiimide chemistry. These properties combined make these fluorescent NCs greatly promising for use in various imaging and sensing applications where NIR and long-lived excitations are desired.


Journal of the American Chemical Society | 2013

Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots.

Naiqian Zhan; Goutam Palui; Malak Safi; Xin Ji; Hedi Mattoussi

Hydrophilic functional semiconductor nanocrystals that are also compact provide greatly promising platforms for use in bioinspired applications and are thus highly needed. To address this, we designed a set of metal coordinating ligands where we combined two lipoic acid groups, bis(LA)-ZW, (as a multicoordinating anchor) with a zwitterion group for water compatibility. We further combined this ligand design with a new photoligation strategy, which relies on optical means instead of chemical reduction of the lipoic acid, to promote the transfer of CdSe-ZnS QDs to buffer media. In particular, we found that the QDs photoligated with this zwitterion-terminated bis(lipoic) acid exhibit great colloidal stability over a wide range of pHs, to an excess of electrolytes, and in the presence of growth media and reducing agents, in addition to preserving their optical and spectroscopic properties. These QDs are also stable at nanomolar concentrations and under ambient conditions (room temperature and white light exposure), a very promising property for fluorescent labeling in biology. In addition, the compact ligands permitted metal-histidine self-assembly between QDs photoligated with bis(LA)-ZW and two different His-tagged proteins, maltose binding protein and fluorescent mCherry protein. The remarkable stability of QDs capped with these multicoordinating and compact ligands over a broad range of conditions and at very small concentrations, combined with the compatibility with metal-histidine conjugation, could be very useful for a variety of applications, ranging from protein tracking and ligand-receptor binding to intracellular sensing using energy transfer interactions.


Journal of the American Chemical Society | 2012

Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media.

Goutam Palui; Tommaso Avellini; Naiqian Zhan; Feng Pan; David H. Gray; Igor V. Alabugin; Hedi Mattoussi

We report a new strategy for the photomediated phase transfer of luminescent quantum dots, QDs, and potentially other inorganic nanocrystals, from hydrophobic to polar and hydrophilic media. In particular, we demonstrate that UV-irradiation (λ < 400 nm) promotes the in situ ligand exchange on hydrophobic CdSe QDs with lipoic acid (LA)-based ligands and their facile QD transfer to polar solvents and to buffer media. This convenient method obviates the need to use highly reactive agents for chemical reduction of the dithiolane groups on the ligands. It maintains the optical and spectroscopic properties of the QDs, while providing high photoluminescence yield and robust colloidal stability in various biologically relevant conditions. Furthermore, development of this technique significantly simplifies the preparation and purification of QDs with sensitive functionalities. Application of these QDs to imaging the brain of live mice provides detailed information about the brain vasculature over the period of a few hours. This straightforward approach offers exciting possibilities for expanded functional compatibilities and reaction orthogonality on the surface of inorganic nanocrystals.


Langmuir | 2012

Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals.

Goutam Palui; Hyon Bin Na; Hedi Mattoussi

We have developed a new set of multifunctional multidentate OligoPEG ligands, each containing a central oligomer on which were laterally grafted several short poly(ethylene glycol) (PEG) moieties appended with either thioctic acid (TA) or terminally reactive groups. Reduction of the TAs (e.g., in the presence of NaBH(4)) provides dihydrolipoic acid (DHLA)-appended oligomers. Here the insertion of PEG segments in the ligand structure promotes water solubility and reduces nonspecific interactions, while TA and DHLA groups provide multidentate anchoring onto Au nanoparticles (AuNPs) and ZnS-overcoated semiconductor quantum dots (QDs), respectively. The synthetic route involves simple coupling chemistry using N,N-dicylohexylcarbodiimide (DCC). Water-soluble QDs and AuNPs capped with these ligands were prepared via cap exchange. As prepared, the nanocrystals dispersions were aggregation-free, homogeneous, and stable for extended periods of time over pH ranging from 2 to 14 and in the presence of excess electrolyte (2 M NaCl). The new OligoPEG ligands also allow easy integration of tunable functional and reactive groups within their structures (e.g., azide or amine), which imparts surface functionalities to the nanocrystals and opens up the possibility of bioconjugation with specific biological molecules. The improved colloidal stability combined with reactivity offer the possibility of using the nanocrystals as biological probes in an array of complex and biologically relevant media.


Journal of the American Chemical Society | 2015

PHOTOLIGATION OF AN AMPHIPHILIC POLYMER WITH MIXED COORDINATION PROVIDES COMPACT AND REACTIVE QUANTUM DOTS

Wentao Wang; Anshika Kapur; Xin Ji; Malak Safi; Goutam Palui; Valle Palomo; Philip E. Dawson; Hedi Mattoussi

We introduce a new set of multicoordinating polymers as ligands that combine two distinct metal-chelating groups, lipoic acid and imidazole, for the surface functionalization of QDs. These ligands combine the benefits of thiol and imidazole coordination to reduce issues of thiol oxidation and weak binding affinity of imidazole. The ligand design relies on the introduction of controllable numbers of lipoic acid and histamine anchors, along with hydrophilic moieties and reactive functionalities, onto a poly(isobutylene-alt-maleic anhydride) chain via a one-step nucleophilic addition reaction. We further demonstrate that this design is fully compatible with a novel and mild photoligation strategy to promote the in situ ligand exchange and phase transfer of hydrophobic QDs to aqueous media under borohydride-free conditions. Ligation with these polymers provides highly fluorescent QDs that exhibit great long-term colloidal stability over a wide range of conditions, including a broad pH range (3-13), storage at nanomolar concentration, under ambient conditions, in 100% growth media, and in the presence of competing agents with strong reducing property. We further show that incorporating reactive groups in the ligands permits covalent conjugation of fluorescent dye and redox-active dopamine to the QDs, producing fluorescent platforms where emission is controlled/tuned by Förster Resonance Energy Transfer (FRET) or pH-dependent charge transfer (CT) interactions. Finally, the polymer-coated QDs have been coupled to cell-penetrating peptides to facilitate intracellular uptake, while subsequent cytotoxicity tests show no apparent decrease in cell viability.


ACS Applied Materials & Interfaces | 2013

Combining Ligand Design with Photoligation to Provide Compact, Colloidally Stable, and Easy to Conjugate Quantum Dots

Naiqian Zhan; Goutam Palui; Henry Grise; Hengli Tang; Igor V. Alabugin; Hedi Mattoussi

We describe the design and synthesis of two compact multicoordinating (lipoic acid-appended) zwitterion ligands for the capping of luminescent quantum dots, QDs. This design is combined with a novel and easy to implement photoligation strategy to promote the in situ ligand exchange and transfer of the QDs to buffer media. This method involves the irradiation of the native hydrophobic nanocrystals in the presence of the ligands, which promotes in situ cap exchange and phase transfer of the QDs, eliminating the need for a chemical reduction of the dithiolane groups. Applied to the present LA-zwitterion ligands, this route has provided QDs with high photoluminescence yields and excellent colloidal stability over a broad range of conditions, including acidic and basic pH, in the presence of growth media and excess salt conditions. The small lateral extension of the capping layer allowed easy conjugation of the QDs to globular proteins expressing a terminal polyhistidine tag, where binding is promoted by metal-affinity interactions between the accessible Zn-rich surface and imidazoles in the terminal tag of the proteins. The ability to carry out conjugation in acidic as well as basic conditions opens up the possibility to use such self-assembled QD-protein conjugates in various biological applications.


Nature Protocols | 2015

Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic motif and lipoic acid anchors

Naiqian Zhan; Goutam Palui; Hedi Mattoussi

Luminescent quantum dots (QDs) can potentially be used for many biological experiments, provided that they are constructed in such a way as to be stable in biological matrices. Furthermore, QDs that are compact in size and easy to couple to biomolecules can be readily used for applications ranging from protein tracking to vasculature imaging. In this protocol, we describe the preparation of ligands comprising either one or two lipoic acid (LA) groups chemically linked to a zwitterion moiety. These ligands are then used to functionalize luminescent QDs via a photochemical transformation of LA. This route produces nanocrystals that are compact in size and stable over a broad range of conditions. In addition, the resulting QDs are readily self-assembled with polyhistidine-appended proteins. This mode of conjugation maintains the protein biological activity and its orientation, yielding highly promising fluorescent conjugates that can be used for imaging and sensing. The protocol in its entirety can be completed in 3 weeks.

Collaboration


Dive into the Goutam Palui's collaboration.

Top Co-Authors

Avatar

Hedi Mattoussi

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Naiqian Zhan

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Wentao Wang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Fadi Aldeek

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Xin Ji

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Anshika Kapur

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birong Zeng

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Chengqi Zhang

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge