Anssi V. Vähätalo
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anssi V. Vähätalo.
Frontiers of Earth Science in China | 2016
Thomas Riedel; Maren Zark; Anssi V. Vähätalo; Jutta Niggemann; Robert G. M. Spencer; Peter J. Hernes; Thorsten Dittmar
Rivers carry large amounts of dissolved organic matter (DOM) to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC) during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae), however, revealed clear differences between degraded riverine and deep-sea DOM (molecular Bray-Curtis dissimilarity of ~50%). None of our experimental treatments enhanced the molecular similarity between the rivers and the deep ocean. We conclude that terrigenous DOM retains a specific molecular signature during photo-degradation on much longer time scales than previously assumed and that substantial, thus far unknown, molecular transformations occur prior to downward convection into the deep oceanic basins.
Science of The Total Environment | 2015
Yi-Hua Xiao; Antti Räike; Helinä Hartikainen; Anssi V. Vähätalo
Organic chromophores of total organic carbon (TOC) and those of iron (Fe) contribute to the color of water, but the relative contributions of colored organic carbon (COC%) and Fe (Fe%) are poorly known. In this study, we unraveled Fe% and COC% in 6128 unfiltered water samples collected from 94 Finnish river sites of contrasting catchment properties. According to regression analysis focusing on TOC alone, on average 84% of the mean TOC consisted of COC, while 16% was non-colored or below the color-detection limit. COC and Fe were much more important sources of color than phytoplankton (chlorophyll a as a proxy) or non-algal particles (suspended solids as a proxy). When COC and Fe were considered as the only two sources of color, COC% ranged from 16.8% to 99.5% (mean 71%) and Fe% from 0.5% to 83.2% (mean 29%). Similar Fe% and COC% values were obtained when color was estimated from the absorption coefficients of COC and Fe at 490 nm. Fe% increased as a function of the concentration of Fe and was well predicted by the TOC-to-Fe mass ratio. In 608 samples with TOC-to-Fe ratios of <4.5, Fe dominated the color. TOC-to-Fe ratios varied widely within most sites, but in relation to hydrology. In catchments with a peatland coverage of >30%, peak flow exported elevated amounts of TOC relative to Fe and resulted in a high COC%. Base flow, instead, mobilized elevated amounts Fe relative to TOC and resulted in a high Fe%. In a catchment covered with 31% of agricultural fields, peak flow transported eroded soil particles high in Fe and thus resulted in a high Fe%, while during base flow the water was high in COC%. This study demonstrated that Fe% and COC% vary widely in river water depending on the catchment properties and hydrology.
Journal of Animal Ecology | 2016
Kalle Meller; Anssi V. Vähätalo; Tatu Hokkanen; Jukka Rintala; Markus Piha; Aleksi Lehikoinen
Partial migration - a part of a population migrates and another part stays resident year-round on the breeding site - is probably the most common type of migration in the animal kingdom, yet it has only lately garnered more attention. Theoretical studies indicate that in partially migratory populations, the proportion of resident individuals (PoR) should increase in high latitudes in response to the warming climate, but empirical evidence exists for few species. We provide the first comprehensive overview of the environmental factors affecting PoR and the long-term trends in PoR by studying 27 common partially migratory bird species in Finland. The annual PoR values were calculated by dividing the winter bird abundance by the preceding breeding abundance. First, we analysed whether early-winter temperature, winter temperature year before or the abundance of tree seeds just before overwintering explains the interannual variation in PoR. Secondly, we analysed the trends in PoR between 1987 and 2011. Early-winter temperature explained the interannual variation in PoR in the waterbirds (waterfowl and gulls), most likely because the temperature affects the ice conditions and thereby the feeding opportunities for the waterbirds. In terrestrial species, the abundance of seeds was the best explanatory variable. Previous winters temperature did not explain PoR in any species, and thus, we conclude that the variation in food availability caused the interannual variation in PoR. During the study period, PoR increased in waterbirds, but did not change in terrestrial birds. Partially migratory species living in physically contrasting habitats can differ in their annual and long-term population-level behavioural responses to warming climate, possibly because warm winter temperatures reduce ice cover and improve the feeding possibilities of waterbirds but do not directly regulate the food availability for terrestrial birds.
Journal of Geophysical Research | 2016
Yi-Hua Xiao; Laura Hoikkala; Ville Kasurinen; Marja Tiirola; Pirkko Kortelainen; Anssi V. Vähätalo
Iron (Fe) may alter the biodegradation of dissolved organic matter (DOM), by interacting with (DOM), phosphorus (P) and microbes. We isolated DOM and a bacterial community from boreal lake water and examined bacterial growth on DOM in laboratory experiments. Fe was introduced either together with DOM (DOM-Fe) or into bacterial suspension, which led to the formation of insoluble Fe-precipitates on bacterial surfaces (Fe coating). In the latter case, the density of planktonic bacteria was an order of magnitude lower than that in the corresponding treatment without introduced Fe. The association of Fe with DOM decreased bacterial growth, respiration, and growth efficiency compared with DOM alone at the ambient concentration of dissolved P (0.16 µmol L–1), indicating that DOM-associated Fe limited the bioavailability of P. Under a high concentration (21 µmol L–1) of P, bacterial biomass and respiration were similar or several times higher in the treatment where DOM was associated with Fe than in a corresponding treatment without Fe. Based on the next generation sequencing of 16S rRNA genes, Caulobacter dominated bacterial communities grown on DOM-Fe. This study demonstrated that association of Fe with a bacterial surface or P reduce bacterial growth and the consumption of DOM. In contrast, DOM-Fe is bioavailable and bound Fe can even stimulate bacterial growth on DOM when P is not limiting.
Oecologia | 2018
Kalle Meller; Markus Piha; Anssi V. Vähätalo; Aleksi Lehikoinen
Anthropogenic climate warming has already affected the population dynamics of numerous species and is predicted to do so also in the future. To predict the effects of climate change, it is important to know whether productivity is linked to temperature, and whether species’ traits affect responses to climate change. To address these objectives, we analysed monitoring data from the Finnish constant effort site ringing scheme collected in 1987–2013 for 20 common songbird species together with climatic data. Warm spring temperature had a positive linear relationship with productivity across the community of 20 species independent of species’ traits (realized thermal niche or migration behaviour), suggesting that even the warmest spring temperatures remained below the thermal optimum for reproduction, possibly due to our boreal study area being closer to the cold edge of all study species’ distributions. The result also suggests a lack of mismatch between the timing of breeding and peak availability of invertebrate food of the study species. Productivity was positively related to annual growth rates in long-distance migrants, but not in short-distance migrants. Across the 27-year study period, temporal trends in productivity were mostly absent. The population sizes of species with colder thermal niches had decreasing trends, which were not related to temperature responses or temporal trends in productivity. The positive connection between spring temperature and productivity suggests that climate warming has potential to increase the productivity in bird species in the boreal zone, at least in the short term.
Global Biogeochemical Cycles | 2018
Hanna Aarnos; Yves Gélinas; Ville Kasurinen; Yufei Gu; Veli‐Mikko Puupponen; Anssi V. Vähätalo
When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoproduction and the photobleaching of tCDOM. The linear relationship between DIC photoproduction and tCDOM photobleaching was used to estimate the amount of photoproduced DIC from the tCDOM fluxes of the study rivers. Solar radiation was estimated to mineralize 12.5 ± 3.7 Tg C yr−1 (10 rivers)−1 or 18 ± 8% of tDOC flux. The irradiation experiments also approximated typical apparent spectral quantum yields for DIC photoproduction (φλ) over the entire lifetime of the tCDOM. Based on φλs and the local solar irradiances in river plumes, the annual areal DIC photoproduction rates from tDOC were calculated to range from 52 ± 4 (Lena River) to 157 ± 2 mmol C m−2 yr−1 (Mississippi River). When the amount of photoproduced DIC was divided by the areal rate, 9.6 ± 2.5 × 106 km2 of ocean was required for the photomineralization of tDOC from the study rivers. Extrapolation to the global tDOC flux yields 45 (31–58) Tg of photoproduced DIC per year in the river plumes that cover 34 (25–43) × 106 km2 of the ocean.
Journal of Geophysical Research | 2016
Yi-Hua Xiao; Laura Hoikkala; Ville Kasurinen; Marja Tiirola; Pirkko Kortelainen; Anssi V. Vähätalo
Iron (Fe) may alter the biodegradation of dissolved organic matter (DOM), by interacting with DOM, phosphorus (P), and microbes. We isolated DOM and a bacterial community from boreal lake water and examined bacterial growth on DOM in laboratory experiments. Fe was introduced either together with DOM (DOM-Fe) or into bacterial suspension, which led to the formation of insoluble Fe precipitates on bacterial surfaces (Fe coating). In the latter case, the density of planktonic bacteria was an order of magnitude lower than that in the corresponding treatment without introduced Fe. The association of Fe with DOM decreased bacterial growth, respiration, and growth efficiency compared with DOM alone at the ambient concentration of dissolved P (0.16 µmol L−1), indicating that DOM-associated Fe limited the bioavailability of P. Under a high concentration (21 µmol L−1) of P, bacterial biomass and respiration were similar or several times higher in the treatment where DOM was associated with Fe than in a corresponding treatment without Fe. Based on the next generation sequencing of 16S rRNA genes, Caulobacter dominated bacterial communities grown on DOM-Fe. This study demonstrated that association of Fe with a bacterial surface or P reduces bacterial growth and the consumption of DOM. In contrast, DOM-Fe is bioavailable and bound Fe can even stimulate bacterial growth on DOM when P is not limiting.
Marine Chemistry | 2013
Susann Müller; Anssi V. Vähätalo; Colin A. Stedmon; Mats A. Granskog; Louiza Norman; Shazia N. Aslam; Graham J. C. Underwood; Gerhard Dieckmann; David N. Thomas
Photochemical and Photobiological Sciences | 2015
Jonna Piiparinen; Sara Enberg; Janne-Markus Rintala; Ruben Sommaruga; Markus Majaneva; Riitta Autio; Anssi V. Vähätalo
Global Biogeochemical Cycles | 2018
Hanna Aarnos; Yves Gélinas; Ville Kasurinen; Yufei Gu; Veli‐Mikko Puupponen; Anssi V. Vähätalo